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CHAPTER 13
MONI TORI NG PERFCRVANCE OF SEEPAGE CONTROL MEASURES

13-1. General Considerations.

a. Before seepage control neasures are inplenented, site characteriza-
tion by thorough exploration and testing is needed to determne if the seepage
control nmeasures will serve the intended purpose. Know edge of the in situ
site conditions along with the purpose of the seepage control nmeasure and its
physical dimensions will help deternmine' the overall nunber and the placenent
of monitoring devices. Several factors which can be nonitored that can |ead
to a conclusion regarding the safety of a damare: (1) progressive increase
in the volume of seepage flow, (2) renoval of solids by the seepage,

(3) increased uplift pressures or locally depressed gradients, and (4) soft or
wet areas on the downstream enbanknent.

b. Mnitoring the perfornance of seepage control neasures can lead to a
coll ective conclusion drawn from several neasurenents. The npost common and
easiest monitoring is to rely on visual observations along with careful sur-
face inspections at predetermined intervals. Another type of monitoring which
shoul d be conpleted before construction is the installation of piezoneters,
observation wells, and drainage collection systems to deternine a site depen-
dent pattern of behavior. Finally, the actual structure should be nonitored
by the installation of a site specific network of piezometers, observation
wells, and drainage collection systems with flow measurenents designed for the
anticipated seepage problens. A regular review of the data collected will
general |y detect major changes between subsequent readings but equally as
inmportant are the long-range trends manifested by steady changes or intermt-
tent surges.

c. If it is determned during the monitoring process that a possible
probl em exi sts, an expanded instrunentation program may be needed. This could
include nore piezoneters, relief wells, etc., and a nore extensive analysis of
the seepage water; i.e., both a physical and chenical analysis of the sediment
and water including tenperature, salt content, and resistivity which could be
conpared with sanples from the enbanknent and possible seepage sources.
According to the conplexity of the problemand/or the econonics versus safety
involved a group of other studies could be added including, but not limted to:
resistivity and spontaneous potential of the enbankment and foundation, dye
tracing, infrared (aerial or portable ground based), and seepage acoustic
em ssions. In nost cases, the scope of the nonitoring program will be deter-
m ned by the econom cs involved.

13-2. Piezoneters for Seepage Pressures.

a. Foundation. To deternine the performance of seepage control neasures,
a pattern of behavior should be established prior to and during construction
where long-term trends can be related to design or seepage conditions. Piezom
eters should generally be installed in all conpressible foundation soils, the
nunber being dependent on the extent and thickness of the strata. |f possible,
foundation piezometers should be installed-in the sections selected for enbank-
ment piezometers and shoul d extend beyond the upstream and downstreamtoes a
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di stance equal to the expected migration of pore pressures. An effective

pi ezometer installation plan should convert preconstruction piezoneters into
post construction seepage nonitoring piezoneters for an effective continuity of
data. Shown in figure 13-1 is an exanple of a piezoneter installation with the
enbankment resting on a conpressibility foundation (Chapter 9) and an inper-
vious core cutoff through a sand and gravel |ayer. Effectiveness of the cutoff
and the presence of uplift pressures can be evaluated. Shown in figure 13-2 is
an embanknent with an inpervious core that intercepts a pervious soil and rests
on the top of rock (Chapter 11) and again the effectiveness of the cutoff

and/or the integrity of the rock can be evaluated. Shown in figure 13-3 is an
embankment founded on a thin inpervious top stratumunderlain by a deep zone of
pervious material (Chapter 9). In this case a cutoff was inpractical and seep-
age pressures are sinply nmonitored beneath the damto deternmine time effects on
the control measures while the effectiveness of relief wells downstream is
determined with foundation piezoneters. An effective nonitoring system should
al so include piezoneters in the abutnents to determine the effectiveness of
drains and/or of the enbanknent-abutment interface which could include grout
curtain cutoffs (Chapters 10 and 11). Al so artesian flows may exist in the
abutments and need to be monitored. Shown in figure 13-4 is a piezoneter
installation that is used to nonitor a grout curtain cutoff and cut-slope
drains. Renedial seepage control neasures, discussed in Chapter 12, m ght
require additional piezoneters to nonitor both the installation and the effect
of the new neasures.

b. Enbankment. As discussed in Chapter 8 three nethods for seepage
control in enbankments are: (1) flat slopes with or without drains,
(2) enmbankment zonation, and (3) vertical (or inclined) and horizontal drains
An enbankment with flat slopes (as defined in Chapter 8) constructed of inper-
vious material, and which has infrequent high reservoir |evels, should have
only enough piezoneters in the enbanknment to establish the phreatic surface
A typical exanple is shown in figure 13-5. To nonitor seepage contro
measures in a zoned enbanknent (Chapter 8) the number and spacing of piezom
eters depend not only on the height of the dambut also on the naterial prop-
erties of the zones. The core nust be nonitored to determ ne the phreatic
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Figure 13-1. Exanple of foundation piezoneter installation of Surry Muntain
Dam (from EM 1110-2- 1908)
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surface and in situ perneability. Using this information, cracking potentia
can be estimated. On either side of the core there can be filters, transition
zones, random zones, outer shells, and blankets (Chapter 8). In general, the
different zones should increase in perneability outward and should have

pi ezometers in each zone. During rapid reservoir drawdown, the upstream

pi ezometers woul d detect excess pore pressure buildup while during conserva-
tion and high pools, all the piezoneters would indicate the effectiveness of
the zones and check design values. A typical installation in a zoned enbank-
ment is shown in figure 13-3. In a zoned enbankment the piezoneters |ocated
near the upstream core face can be instrumental in determning the devel opnent
of cracking in the core (Vaughan et al. 1970). Depression of the piezonetric
elevation in a localized area (cone of depression) can indicate velocity head
| oss which would indicate | eakage through the core. Renedial work for

Bal dershead Dam (Vaughn et al 1970 and Lovenburg 1974) included placenent of a
| arge nunber of piezometers near the upstream face of the core (figure 13-6)
which were successful in indicating piezometric depressions.

c. Drains. The purpose of vertical (or inclined) and horizontal drains
is to control seepage either through the enbanknent or beneath the dam (under-
seepage). A vertical (inclined or horizontal) drain in the embanknment may be
used as a filter to prevent material from eroding fromthe core and/or as a
met hod of collecting seepage exiting from horizontally stratified soil |ayers.
Enough piezometers should be installed in the drain to determine if the seep-
age is coming through the enbankment naterial or if it is underseepage, fig-
ure 13-7. |If the horizontal drains intercept underseepage which in turn is
drained by lateral drains, piezoneters should be placed on either side of the
laterals to determine their effectiveness, figure 13-8. Long-termtrends
(pressure buildup or depression) detected in the drains not directly related to
the reservoir level could indicate either clogged drains (pressure buildup) due
to enbankment or foundation material noving into the drains or piping and
erosion (pressure depression) due to material noving into pipe drains, high
perneability zones, or into fractured rock. Toe drains are effective in col-
| ecting seepage and preventing saturated areas along the downstream toe
Pi ezoneters in or near toe drains would only be effective when a downstream
bl anket has been added and uplift pressures need to be neasured. Drainage
gal leries and tunnels are used nostly in abutments in the United States to
intercept and control seepage in fractured rock. Drainage tunnels along
extensions of the dams axis or in downstream abutnent areas serve to collect
seepage. Piezoneters located near the drainage tunnels would indicate the
effectiveness of the tunnel. Cut-slope drains can be used to intercept seep-
age and col | ect drainage al ong abutment sl opes while piezonmeters placed both
upstream and downstream of the drains can determne effectiveness of the col-
|l ection system figure 13-9.

d. Downstream Areas. Seepage can nigrate beyond the enmbankment toe
particularly in clay shale or fissured formations. Geologic site characteri-
zation in nost cases will deternmine the need for piezoneters downstream of the
toe but if there is any doubt they should be installed in the questionable
formations 50 to 150 ft beyond the toe, figure 13-1. Piezoneters should al so
be installed downstream of the outlet works, spillway, and stilling basin if
they extend well beyond the toe and are not close to other piezoneters.
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e. Near Relief Wells. If a relief well system has been installed, pore
pressures should be checked in the vicinity to evaluate the efficiency of the
system  Piezoneters should be located both upstream and downstream of the
relief wells and should intercept the stratum being drained, figure 13-3. |If
there is a line of wells, piezometers should also be installed generally at
the mdpoint between the wells or at the point expected to have the highest
pore pressures.

f. Spillways, Stilling Basins, and Qutlet Wrks. Underseepage contro
beneath the stilling basins of spillways and outlet structures founded on per-
vious foundations is generally provided by drainage bl ankets suppl enented in
the case of stratified foundations by deep well systens (figures 13-10 and
13-11). Drainage bl ankets extend beneath the chute slabs, if necessary. As
shown in figure 13-10, piexoneters should be installed to check the effective-
ness of the drainage blanket and relief wells, and to check pore pressure
beneath the outlet channel and against the stilling basin walls. Piezoneters
are used to check pore pressures occurring below the relief well system (fig-
ure 13-10). Generally, a sheet pile wall, with a mninum penetration of
15 ft, is installed along the downstream toe of the stilling basin to contro
pi ping and a piezoneter installed dowstreamof the wall is needed to deter-
mne the effectiveness of the wall

13-3. Fl ow Measuremnents.

a. Wirs. Seepage flow neasurement is an inportant paraneter of dam
performance. Most installations have used a relatively sinple weir, neasuring
t he seepage over brass or stainless steel 90-deg V-notches like the collection
system shown in figures 13-12 and 13-13. A nunber of weirs can be installed
in drainage galleries to deternmine flows fromdifferent sources, i.e., left or
ri ght abutnment, dam underseepage, and total seepage. A certain anount of
sedinments will settle out just upstreamof the weir which is inportant if the
sediment load is not continuous and occurs between visual inspections. If the
seepage is exiting downstream of the dam and outsi de of a drainage collection
system a weir pond can be formed in conjunction with the V-notch weir for the
specific purpose of deternmining |ong-term sedinment content in the seepage

b. Flunes. A flume is a short rigid-walled channel designed to con-
strict the flow and so give rise to critical velocity. A single neasurenent
of water level is sufficient to neasure discharge at critical velocity. The
nost commonly used flune for seepage neasurenents is the Parshall flume as
shown in figure 13-14. Enpirical charts for flow discharge have been devel -
oped for specified flune dinmensions (Bureau of Reclamation 1967). The flune
can be fabricated and placed in seepage flow that has been channelized. This
nethod is a relatively rapid and sinple way to obtain precise flow
measur enent s.

c. Relief \Wells. Relief wells, as the nane inplies, are widely used to
relieve pressures and control seepage through pervious strata beneath earth
dams, spillways, and outlet works. A thorough know edge of the geol ogic con-
ditions and characteristics of the soils at the damnust be available to
design a systemas part of initial construction or as renedial work. To be
effective, the well nust flow but nust not allow the |oss of foundation
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Figure 13-14. Modified Parshall flumes of 6- to 65-second-foot
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)

material which could lead to piping or erosion failure. A frequent use of
relief wells is near the downstream toe of a dam to control seepage through a
pervious zone, figure 13-13. A toe drain is used to collect the flow while
weirs in the drains or manonmeters on the wells can determne the quantity of
flow Relief wells can be punped to deternmine the effect on surrounding

capacity (after Bureau of Reclamation

ground water and the perneability of the soil near the well. In nany cases
where dans are built on jointed or fractured rock, grout curtains are used as
seepage cutoffs. It has been found in some cases that grout curtains do not

appreciably affect the uplift pressures downstream of the curtain and that a
series of drainage wells is a nore effective tool to reduce uplift pressures
when the volume of seepage loss is not a problem and when the high cost of
grouting is hard to justify (Casagrande 1961). Relief wells have been suc-
cessfully used when the pervious strata is too deep and wide-ranging to
effectively use any type of positive cutoff. Relief (drainage) wells are used
beneath spillway and outlet works slabs to relieve excess pressure in the
rock, the underslab drains, or a pervious strata. An exanple of a group of
wel | s designed to relieve pressure under an outlet works stilling basin is
shown in figure 13-10. Relief wells can be used in rock abutments to inter-
cept seepage and to control artesian flow.

d. Seepage Qutlets. Mnitoring seepage outlets downstream of the dam
is handled according to the present severity of the problemor to future
associative problenms if the seepage worsens. A small wet zone near the toe
mght require only routine visual examnation as would a small trickle from a
rock abutment. If there is sufficient seepage to neasure, an effort should be
nmade to estinate the volune with a container and a stopwatch and to note sedi-
ment content. Operation and naintenance personnel should be trained to
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observe the situation especially during high reservoir levels. Al seepage
outlets should be nonitored to determne long-term trends. Sand boils devel -
oping downstream require imediate attention. An estimate of the pore pres-
sure involved can be deternmined by sandbagging around the boil to neasure the
height of water rise. |If the seepage exiting at the toe or abutnent is severe
and will require renmedial work but the damis not in inmnent danger of fail-
ing, collection systems nust be designed as a pattern develops. Tenporary
control nmeasures such as toe drains and surcharge berms might be installed
with weirs to establish the severity and the trends of the seepage for use in
design of renedial work. Any changes noted during nonitoring, i.e., volume
change, sedinment |oad change, etc., should be considered inportant. After the
renedi al work has been designed it may include any nunber of the nmonitoring
systens discussed previously in this chapter. |f the seepage is exiting froma
drain systemthat is not being nonitored internally, visual nonitoring should
continue at specified intervals and during heavy runoffs and high reservoir

| evel s.

13-4.  Seepage Water Analysis.

a. Physical Analysis. Physical analysis of the seepage could include
i nfornmation on suspended solids, tenperature contours, and water resistivity
values. This information may be obtained from physical testing of sanples or
by renmpte testing techniques.

(1) The ampount of suspended solids in the seepage is an indication of
material novement and piping. Al though there are obvious problens wth nuddy
or turbid flow, seepage which appears clear may often carry small anmounts of
suspended solids that would be detected by occasional sanples and analysis.
Sedi nent traps built in conjunction with manhol es and weirs can be used to
i ndi cate the anount of suspended sedinent and to obtain sanples for chemca
anal ysi s.

(2) Several different methods of neasuring tenperature are designed to
hel p | ocate seepage areas not yet visible and to trace seepage fromits origin
toits exit. One renpte sensing method (U. S. Arny Engineer District, Los
Angel es 1981) is an aerial survey which includes any or all of the follow ng:
(a) color photography, (b) color infrared photography, (c) thermal infrared
and (d) color oblique imagery. The basis for the study is that different
materials (wet or saturated versus dry) possess different heat absorption
rates; therefore, heat radiation rates will differ. Since the specific heat
of water is higher than soil or rock, a warm zone in a known seepage area is a
suspected seepage outlet. This nethod is intended for |arge areas but snaller
areas can be covered by thermal infrared using portable hand-held units (Leach
1982). A second method of thermal monitoring (U. S. Arny District, Lcs
Angel es 1981) is to physically place an array of gages in and adjacent to the
enbanknent and neasure the diurnal tenperature (tenperature below the reach of
the surface but within the annual tenperature zone). A tenperature fluctua-
tion is interpreted as seepage related and becomes the basis for further study
in that zone. A vertical thermal contour can be nade in present open system
pi ezometers or in renedial planned piezoneters, again with tenperature fluctu-
ations or inversions interpreted as seepage related (U S. Arny Engineer Dis-
trict, Los Angeles 1981 and Leach 1982). These data are interpreted or
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expanded by determining the tenperature stratification of the reservoir, the
temperature of all known seepage sources, and the tenperature at the seepage
exits.

(3) Seepage can be nonitored by the physical detection of tracer ele-
ments such as dye and isotopes that have been introduced upstream of the seep-
age exit either in the reservoir or a piezoneter close to the suspected seep-
age path. The dye selected should have a favorable absorption and decay rate
and should meet state water quality control requirenents. Sanples taken from
pi ezometers, drains, and downstream exit points are nonitored using an instru-
ment capable of measuring parts per billion, e.g., a fluorometer for fluores-
cein dye. By recording time of arrival and concentrations, interpretations
can be made as to the source of the seepage and the perneability of the strata
along the path of seepage. Environnental isotopes are also traced by obtain-
ing sanples which can be neasured by a mass spectrometer for oxygen -18 and
deuterium and by the low level counting system for tritium

(4) Another physical property of the seepage that can be neasured is
its conductance or resistance. Resistance which would be defined in the field
by a resistivity survey is a neasure of the ability to resist current flow
through the seepage, a factor that is altered by the introduction of salt com
pounds, graphite, etc. A thorough sanmpling program from all possible sources
of seepage, all seepage exits, and all available piezometers can produce a
group of resistivity values that is an inportant tool in defining seepage
sources and possible paths. Using the geologic profile for the site, and by
comparing individual resistivity values or by conparison against a range of
known values (Telford et al. 1976), an interpretation as to the source of the
seepage and the strata through which it travels can be nade

b. Chemcal Analysis. To nmonitor and interpret the chemcal conposi-
tion of seepage requires a thorough know edge of the surrounding geol ogy or
chem cal analysis of sanples in the different strata. |If possible, a pre-
construction chenical analysis should be conducted on all water sources and on
any formation that night contribute ninerals or salts or that nmight affect
acidity or alkalinity.

(1) One inmportant chemical property would be the salt concentrations in
the seepage. In this case to determine correlations, reservoir and ground-
wat er concentrations are essential along with the mneral content of the area,
e.g., water flowing through |inmestone would generally increase in chloride
concentration. Mnerals such as feldpoid sodalite and apatite (Turkish
National Committee 1976) or caliche in volcanic regions (U S. Arny Engineer
District, Los Angeles 1981) can release chloride ions into the water. Inter-
pretation of chloride concentrations and its long-term trends can help deter-
mne the relative length of seepage paths (shallow or deep seated), the extent
of the leaching of the formation (whether concentrations are constant,
increasing, or decreasing), and the source of the seepage (conparable concen-
trations). Interpretation is sight-dependent and any of the above or possibly
ot her conclusions may be reached

(2) Another chenical property needed for interpretation is the mnera
content of the seepage. Mneral concentrations of cal cium and magnesi um
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bi carbonat e contai ning di ssol ved carbon nonoxi de increase with | ength of flow
through a linestone formation while flow through some clay nminerals may

i ncrease concentrations of calcium and nmagnesium Again, interpretation is
site dependent and requires a thorough know edge of the existing conditions.

(3) Stiff diagrams, as shown in figure 13-15, are a graphical nethod of
presenting the anions and cations that are dissolved in the water (Hem 1970).
The Stiff nmethod uses ions plotted in the same sequence to give an irregular
pol ygonal shape or pattern. In tracing the novenent of seepage water, the
Stiff patterns are plotted on a map of the site for various |ocations down-
stream of the dam and the reservoir. The Stiff patterns may yield infornmation
regardi ng the path(s) of seepage fromthe reservoir, prior |land uses down-
stream of the dam (feedlot, septic field, etc.), and type of formation
(gypsum dolonite, etc.).

13-5.  Renote Sensing Methods.

a. Resistivity and Spontaneous Potential. As part of a total seepage
study, resistivity and spontaneous potential methods have been used success-
fully for seepage delineation in soil and rock (Cooper and Bieganousky 1978
Cooper, Koester, and Tranklin 1982; and Koester et al. 1984). Resistivity
surveys used as part of a seepage study hel p identify possible zones of high
moi sture as a function of depth and location. After the surveys are correl ated
to previous borings or geologic information, new borings are placed in the
seepage flows. Spontaneous potential surveys are used to detect negative D. C
vol tage anonalies in the surface electrical field which have been found to
i ndi cate zones of seepage flow (Cooper, Koester, and Tranklin 1982; and
Koester et al. 1984). Although flowis indicated, depth to flow can not be
determned for a given anonaly.

b.  Photography. Methods using color, color infrared, aerial and ground
base thermal infrared, and col or oblique photography were discussed previously
in paragraph 13-4.a.

¢c. Refraction Seismic Surveys. Seismic surveys can be used indirectly
in a seepage study by providing a bedrock profile that can be used as an aid
in determining the location and depths of observation wells, piezoneters, and
relief wells. It is a quick and inexpensive method for obtaining subsurface
profiles.

d. Seepage Acoustic Vibrations. Acoustic enissions are the noises
generated whenever a material deforns or possibly by seepage whenever there is
turbulent flow against and around a casing (Koerner, Lord, and MCabe 1977).
The techni que has been used to detect seepage by placing an accel erometer on a
wavegui de that extends to the bottom of a borehol e and recording the vibrations
present (Koerner, Lord, and MCabe 1977; and Leach 1982). Increases in enis-
sions activity are interpreted as seepage flow A similar technique that
consi sts of |owering an acoustic mcrophone down into a reservoir has been
used to detect |eakage on the upstream asphalt-covered face and in the reser-
voir itself (Coxon and Crook 1976). One disadvantage woul d be high background
noi se |evels.
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Figure 13-15. Stiff diagram used to graphically present

anions and cations in seepage water (from Hem 1970)



