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CHAPTER 3
FLOOD FREQUENCY ANALYSIS

3-1. Intr ion.

The procedures that federal agencies are to follow when computing a frequency
curve of annual flood peaks have been published in Guidelines for Determining Flood
Flow Frequency, Bulletin 17B (46). As stated in Bulletin 17B, "Flood events ... do not fit
any one specific known statistical distribution." Therefore, it must be recognized that
occasionally, the recommended techniques may not provide a reasonable fit to the data.
When it is necessary to use a procedure that departs from Bulletin 17B, the procedure
should be fundamentally sound and the steps of the procedure documented in the report
along with the frequency curves.

This report contains most aspects of Bulletin 17B, but in an abbreviated form.

YVacintic aemantc i ; i i
Various aspects of the procedures are described in an attempt to clarify the computational

steps. The intent herein is to provide guidance for use with Bulletin 17B. The step by
step procedures to compute a flood peak frequency curve are contained in Appendix 12 of
Bulletin 17B and are not repeated herein. ’

rson T II Distribution.

a. General. The analytical frequency procedure recommended for annual maximum
streamflows is the logarithmic Pearson type III distribution. This distribution requires
three parameters for complete mathematical specification. The parameters are: the mean,
or first moment, (estimated by the sample mean, X); the variance, or second moment,
(estimated by the sample variance, S): the skew, or third moment, (estimated by the
sample skew, G). Since the distribution is a logarithmic distribution, all parameters are
estimated from logarithms of the observations, rather than from the observations
themselves. The Pearson type III distribution is particularly useful for hydrologic
investigations because the third parameter, the skew, permits the fitting of non-normal
samples to the distribution. When the skew is zero the log-Pearson type III distribution
becomes a two-parameter distribution that is identical to the logarithmic normal (often
called log-normal) distribution.

b. Fitting the Distribution.

(1) The log-Pearson type III distribution is fitted to a data set by calculating the
sample mean, variance, and skew from the following equations:

X & — (3-1)

(3-2a)
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in which:

X = mean logarithm

X = logarithm of the magnitude of the annual event
N = number of events in the data set

S = unbiased estimate of the variance of logarithms

x = X-X, the deviation of the logarithm of a single event from the mean
logarithm

G = unbiased estimate of the skew coefficient of logarithms

The precision of the computed values is more sensitive to the number of significant digits
when Equations 3-2b and 3-3b are used.

(2) In terms of the frequency curve itself, the mean represents the general
magnitude or average ordinate of the curve, the square root of the variance (the standard
deviation, S) represents the slope of the curve, and the skew represents the degree of
curvature. Computation of the unadjusted frequency curve is accomplished by computing
values for the logarithms of the streamflow corresponding to selected values of percent
chance exceedance. A reasonable set of values and the results are shown in Table 3-1.
The number of values needed to define the curve depends on the degree of curvature (i.e.,
the skew). For a skew value of zero, only two points would be needed, while for larger
skew values all of the values in the table would ordinarily be needed.

(3) The logarithms of the event magnitudes corresponding to each of the selected
percent chance exceedance values are computed by the following equation:

logQ = X +KS (3-4)

where X and S are defined as in Equations 3-1 and 3-2 and where
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log Q = logarithm of the flow (or other variable) corresponding to a specified value
of percent chance exceedance

K = Pearson type IIl deviate that is a function of the percent chance exceedance
and the skew coefficient.

c. Example Computation.

(1) As shown in the following example, Equation 3-4 is solved by using the
computed values of X and S and obtaining from Appendix V-3 the value of K
corresponding to the adopted skew, G, and the selected percent chance exceedance (P).
An example computation for P=1.0, where X, S and G are taken from Table 3-1, is:

log Q = 3.3684 + 2.8236 (.2456)
= 4.0619
Q = 11500 cfs

(2) It has been shown (36) that a frequency curve computed in this manner is biased
in relation to average future expectation because of uncertainty as to the true mean and
standard deviation. The effect of this bias for the normal distribution can be eliminated
by an adjustment termed the expected probability adjustment that accounts for the actual
sample size. This adjustment is discussed in more detail in Section 3-4. Table 3-1 and
Figure 3-1 shows the derived frequency curve along with the expected probability
adjusted curves and the 5 and 95 percent confidence limit curves.

Table 3- T rve an isti

-FREQUENCY CURVE- 01-3735 FISHKILL CREEX AT BEACON, NEW YORK
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" FLOW,CFS........ * PERCENT #.. CONFIDENCE LIMITS....*
- EXPECTED * CHANCE *
* COMPUTED PROBABILITY * EXCEEDANCE * 0.05 LIMIT 0.95 LIMIT *
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* MEAN LOGARITHM 3.368¢ * HISTORIC EVENIS 0
» STANDARD DEVIATION  0.2456 * HIGH OUTLIERS 0 »
* COMPUTED SKEW 0.7300 * LOW OUTLIERS 0 *
* GENERALIZED SKEW 0.6000 * ZERO OR MISSING 0 »
* ADOPTED SKEW 0.7000 * SYSTEMATIC EVENTS 24w
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Figure 3-1. Annual Frequency Curve.
d. Broken Record. A broken record results when one or more years of annual peaks

are missing for any reason not related to the flood magnitude. In other words, the missing
events were caused by a random occurrence. The gage may have been temporarily
discontinued for budgetary or other reasons. The different segments of the record are
added together and analyzed as one record, unless the different parts of the record are
considered non-homogeneous. If a portion of the record is missing because the gage was
destroyed by a flood or the flood was too low to record, then the observed events should
be analyzed as an incomplete record.

e. Incomplete Record. An incomplete record can result when some of the peak flow
events were either too high or too low. Different analysis procedures are recommended
for missing high events and for missing low events. Missing high events may result from
the gage being out of operation or the stage exceeding the rating table. In these cases,
every effort should be made to obtain an estimate of the missing events. Missing low
floods usually result when the flood height is below the minimum reporting level or the
bottom of a crest stage gage. In these cases, the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.
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the entire year. A zero flood peak precludes the normal statistical analysis because the
logarithm of zero is minus infinity. In this case the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.

1) Guidance. The Bulletin 17B (46) defines outliers as "data points which depart

m the trend of the remainine data” The sequence of steps for testing for
3 L3 bl Wil WA ‘IIU AN AB86R4843 lb Awiw Wi P Vi ‘Uh’“l.a 1Vl

’ Oll av
high and low outliers is dependent upon the skew coeffxcxent and the treatment of high
outliers differs from that of low outliers. When the computed (station) skew coefficient is
greater than +0.4, the high-outlier test is applied first and the adjustment for any high
outliers and/or historic information is made before testing for low outliers. When the
skew coefficient is less than -0.4, the low-outlier test is applied first and the adjustment
for any low outlier(s) ns made before testing for hxgh outliers and adjustmg for any
historic information. When the skew coefficient is between -0.4 and +0. 4, botih the uig i~
and low-outlier tests are made to the systematic record (minus any zero flood events)
before anv adiustments are made

Seils 222 ..._J..-~. en S dalasise.

(2) Eguation. The following equation is used to screen for outliers:

"
»

+ K8 (3-5)

where:

Lel
0

outlier threshold in log units

X
"

mean logarithm (may have been adjusted for high or low outliers, and/or
historical information depending on skew coefficient)

S = standard deviation (may be adjusted value)

Ky = K value from Appendix 4 of Bulletin 17B or Appendix F, Table 11 of this
report. Use plus value for high-outlier threshold and minus value for
low-outlier threshold

N = Sampie size (may be historic period (H) if historically adjusted statistics are
used)

-

(‘n High Qutliers. Flood peaks that are abg.p he 1 upper thr gs__gl_d are treated as high
utliers are weighted by
the historical adjustment equations. Therefore, for any flood peak(s) to be weighted as
high outlier(s), either historical information must be available or the probable occurrence
of the event(s) estimated based on flood information at nearby sites. If it is not possible
to obtain any information that weights the high outlier(s) over a longer period than that of
the systematic record, then the outlier(s) should be retained as part of the systematic
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(4) Low Outliers. Flood peaks that are below the low threshold value are treated as
low outliers. Low outliers are deleted from the record and the frequency curve computed
by the conditional probability adjustment (Section 3-6). If there are one or more values
very near, but above the threshold value, it may be desirable to test the sensitivity of the
results by considering the value(s) as low outlier(s).

h. Historic Events and Historical Information.

(1) Definitions. Historic events are large flood peaks that occurred outside of the
systematic record. Historical information is knowledge that some flood peak, either
systematic or historic, was the largest event over a period longer than that of the
systematic record. It is historical information that allows a high outlier to be weighted
over a longer period than that of the systematic record.

(2) Egquations. The adjustment equations are applied to historic events and high
outliers at the same time. It is important that the lowest historic peak be a fairly large
peak, because every peak in the systematic record that is equal to or larger than the lowest
historic peak must be treated as a high outlier. Also a basic assumption in the adjusting
equations is that no peaks higher than the lowest historic event or high outlier occurred
during the unobserved part of the historical period. Appendix D in this manual is a
reprint of Appendix 6 from Bulletin 17B and contains the equations for adjusting for
historic events and/or historical information.

3-3. Weighted Skew Coefficient.

a. Genera]. It can be demonstrated, either through the theory of sampling
distributions or by sampling experiments, that the skew coefficient computed from a small
sample is highly unreliable. That is, the skew coefficient computed from a small sample
may depart significantly from the true skew coefficient of the population from which the
sample was drawn. Consequently, the skew coefficient must be compared with other
representative data. A more reliable estimate of the skew coefficient of annual flood
peaks can be obtained by studying the skew characteristics of all available streamflow
records in a fairly large region and weighting the computed skew coefficient with a
generalized skew coefficient. (Chapter 9 provides guidelines for determining generalized
skew coefficients.)

b. Weighting Equation. Bulletin 17B recommends the following weighting equation:

MSE(G) + MSE(G)

G, = (3-6)
MSE; + MSE
where:
G, = weighted skew coefficient
G = computed (station) skew
G = generalized skew
MSE; = mean-square error of generalized skew
MSE. = mean-square error of computed (station) skew
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¢. Mean Square Error.

(1) The mean-square error of the computed skew coefficient for log-Pearson type

Puted

Il random variables has been obtained by sampling experiments. Equation 6 in Bulletin
17B provides an approximate value for the mean-square error of the computed (station)
skew coefficient:

MSEG -~ ]0(A'B[l0910(N/10)]) (3-7a)

= ]0**B/NB (3-7b)

A = -0.33 +0.08 |G|if |G| < 0.90
-0.52 + 0.30 |Gl if |G| > 0.90

]

B = 0.94-0.26|G|if |Gl < .50
= 0.55 if |G} > 1.50
where:
IGi = absolute value of the computed skew
N = record length in years

Appendix F-10 provides a table of mean-square error for several record lengths and skew
coefficients based on Equation 3-7a.

(2) The mean-square error (MSE) for the generalized skew will be dependent on the
accuracy of the method used to develop generalized skew relations. For an isoline map,
the MSE would be the average of the squared differences between the computed (station)
skew coefficients and the isoline values. For a prediction equation, the square of the
standard error of estimate would approximate the MSE. And, if an arithmetic mean of
the stations in a region were adopted, the square of the standard deviation (variance)
would approximate the MSE.

3-4. Expected Probability.

a. The computation of a frequency curve by the use of the sample statistics, as an
estimate of the distribution parameters, provides an estimate of the true frequency curve.
(Chapter 8 discusses the reliability and the distribution of the computed statistics.) The
fact of not knowing the location of the true frequency curve is termed uncertainty. For
the normal distribution, the sampling errors for the mean are defined by the t distribution
and the sampling errors for the variance are defined by the chi-squared distribution.
These two error distributions are combined in the formation of the non-central t
distribution. The non-central t-distribution can be used to construct curves that, with a
specified confidence (probability), encompass the true frequency curve. Figure 3-2 shows
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the confidence limit curves around a frequency curve that has the following assumed
statistics: N=10, X=0., S=1.0. :

b. If one wished to design a flood protection work that would be exceeded, on the
average, only one time every 100 years (one percent chance exceedance), the usual design
would be based on the normal standard deviate of 2.326. Notice that there is a 0.5 percent
chance that this design level may come from a "true" curve that would average 22
exceedances per 100 years. On the other side of the curve, instead of the expected one
exceedance, there is a 99.5 percent chance that the "true” curve would indicate 0.004
exceedances. Note the large number of exceedances possible on the left side of the curve.
This relationship is highly skewed towards the large exceedances because the bound on the
right side is zero exceedance. A graph of the number of possible "true" exceedances
versus the probability that the true curve exceeds this value, Figure 3-3, provides a curve
with an area equal to the average (expected) number of exceedances.

c. The design of many projects with a target of 1 exceedance per 100 years at each
project and assuming N=10 for each project, would actually result in an average of 2.69
exceedances (see Appern .ix F-8).

NORMAL DISTRIBUTION, SAMPLE SIZE=10
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Figure 3-2. Confidence Limit Curves based on the Non-central t Distribution.
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Figure 3-3. Cumulative Probability Distribution of Exceedances per 100 Years.

d. There are two methods that can be used to correct (expected probability
adjustment) for this bias. The first method, as described above, entails plotting the curve
at the "expected” number of exceedances rather that at the target value, drawing the new
curve and then reading the adjusted design level. Appendix F-8 provides the percentages
for the expected probability adjustment.

¢. The second method is more direct because an adjusted deviate (K value) is used in
Equation 3-4 that makes the expected probability adjustment for a given percent chance
exceedance. Appendix F-7 contains the deviates for the expected probability adjustment.
These values may be derived from the t-distribution by the following equation:

Ky = tplN.1[(N+l)/N]"" (3-8)
where:

P = exceedance probability (percent chance exceedance divided by 100)

N = sample size

K = expected probability adjusted deviate

Student’s t-statistic from one-tailed distribution

-~
L]
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f. For a sample size of 10 and a 1% percent chance exceedance, the expected
probability adjusted deviate is 2.959 as compared to the value of 2.326 used to derive the
computed frequency curve.

g. As mentioned in the first paragraph, the non-central t distribution, and
consequently the expected probability adjustment, is based on the normal distribution.
The expected probability adjustment values in Appendices F-7 and F-8 are considered
applicable to Pearson type III distributions with small skew coefficients. The phrase
"small skew coefficients” is usually interpreted as being between -0.5 to +0.5. Note also
that the uncertainty in the skew coefficient is not considered. In other words, the skew
coefficient is treated as if it were the population skew coefficient.

h. The expected probability adjustment can be applied to frequency curves derived
by other than analytical procedures if the equivalent worth (in years) of the procedure can
be computed or estimated.

3-5. Risk.

a. Definition. The term risk is usually defined as the possibility of suffering loss or
injury. In a hydrologic context, risk is defined as "the probability that one or more events
will exceed a given flood magnitude within a specified period of years"” (46). Note that
this narrower definition includes a time specification and assumes that the annual
exceedance frequency is exactly known. Uncertainty is pot taken into account in this
definition of risk. Risk then enables a probabilistic statement to be made about the
chances of a particular location being flooded when it is occupied for a specified number
of consecutive years. The percent chance of the location being flooded in any given year
is assumed to be known.

b. Binomial Distribution. The computation of risk is accomplished by the equation
for the binomial distribution:

N!

= Tnenr PA-PY (3-9)

R

where:
R, = risk (probability) of experiencing exactly I flood events
N = number of years (trials)
I = number of flood events (successes)

P = exceedance probability, percent chance exceedance divided by 100, of the
annual event (probability of success)

(The terms in parentheses are those usually used in statistical texts)

When I equals zero (no floods), Equation 3-9 reduces to:
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= (1-pW (1-102)
Ry (1-P) (3-102)

and the probability of experiencing one or more floods is easily computed by taking the
complement of the probability of no floods:

N
= 1-(1-P) (3-10b)

R
*¥(1 or more)

c. Application.

(1) Risk is an important concept to convey to those who are or will be protected by
flood control works. The knowledge of risk alerts those occupying the flood plain to the
fact that even with the protection works, there could be a significant probability of being
flooded during their lifetime. As an example, if one were to build a new house with the
ground floor at the 1% chance flood level, there is a fair (about one in four) chance that
the house will be flooded before the payments are completed, over the 30-year mortgage

life. Using Equation 3-10b:

= 1_11
I1={I=-

1-.9930

N’

R
(1 or more)

1-.74

.26 or 26% chance

(2) Appendix F-12 provides a table for risk as a function of percent chance
exceedance penod length and number of exceedances. This table could also be used to
check the validity of a derived frequency curve. As an example, if a frequency curve is
determined such that 3 observed events have exceeded the derived 1% chance exceedance
level during the 50 years of record, then there would be reason to quesnon the derived
frequency curve. From Appendix F-12, the probability of this occurring is 0.0122 or
about 1%. It is possible for the situation to occur, but the probability of occurring is very
low. This computation just raises questions about the validity of the derived curve and

indicates that other vahdatxon checks may be warranted before adopting the derived
curve,

Qg g';'g gbability Agigsz ment. The conditional probability adjustment is made

wheﬁ flood pe axs /e either been e d or are not availabie below a specified

hav d iete
truncatxo level. This adjustment will be applied when there are zero flood years, an
incomplete record or low outliers. As stated in Appendix 5 of Rulletin 17B, this

incomplete record or outliers. As stated in Appendix § of Bulletin this

procedure is not appropriate when 25 percent or more of the events are truncated. The
computation steps in the conditional probability adjustment are as follows:

1. Compute the estimated probability (f") that an annual peak will exceed the
truncation ievei:

P = N/n (3-11a)
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where N is the number of peaks above the truncation level and n is the total number
of years of record. If the statistics reflect the adjustments for historic information,
then the appropriate equation is

H - WL
—_— (3-11b)

ol
]

H

where H is the length of historic period, W is the systematic record weight and L is
the number of peaks truncated.

2. The computed frequency curve is actually a conditional frequency curve. Given
that the flow exceeds the truncation level, the exceedance frequency for that flow
can be estimated. The conditional exceedance frequencies are converted to annual
frequencies by the probability computed in Step 1..

P=Fp, (3-12)
where P is the annual percent chance exceedance and P is the conditional percent

chance exceedance.

3. Interpolate either graphically or mathematically to obtain the discharge values
(Qp) for 1, 10 and 50 percent chance exceedances.

4. Estimate log-Pearson type III statistics that will fit the upper portion of the
adjusted curve with the following equations:

log (Q4/Q4¢)
G, = -250+3.12 —— (3-13)
log (Q,0/Qsq)
log (Q,/Qsq)
s, = — TV (3-14)
K1 - Kso
X, = log (Qsp) - Kgp S, (3-15)

where G, S, and X. are the synthetic skew coefficient, standard deviation and
mean respecnvely, é and Qg the discharges determined in Step 3; and K, and

are the Pearson Type PII devnates for percent change exceedances of 1 and g
anc? skew coefficient G,
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5. Combine the synthetic skew coefficient with the generalized skew by use of
Equation 3-6 to obtain the weighted skew.

6. Develop the computed frequency curve with the synthetic statistics and compare
it with the plotted observed flood peaks.

3-7. Two-Station Comparison.
a. Purpose.

(1) In most cases of frequency studies of runoff or precipitation there are locations
in the region where records have been obtained over a long period. The additional period
of record at such a nearby station is useful for extending the record at a short record
station provided there is reasonable correlation between recorded values at the two
locations.

(2) It is possible, by regression or other techniques, to estimate from concurrent
records at nearby locations the magnitude of individual missing events at a station.
However, the use of regression analysis produces estimates with a smaller variance than
that exhibited by recorded data. While this may not be a serious problem if only one or
two events must be estimated to "fill in” or complete an otherwise unbroken record of
several years, it can be a significant problem if it becomes necessary to estimate more than
a few events. Consequently, in frequency studies, missing events should not be freely
estimated by regression analysis.

(3) The procedure for adjusting the statistics at a short-record station involves three
steps: (1) computing the degree of correlation between the two stations, (2) using the
computed degree of correlation and the statistics of the longer record station to compute
an adjusted set of statistics for the shorter-record station, and (3) computing an equivalent
"length of record” that approximately reflects the "worth" of the adjusted statistics of the
short-record station. The longer record station selected for the adjustment procedure
should be in a hydrologically similar area and, if possible, have a drainage area size
similar to that of the short-record station.

b. Computation of Egrrgla;ion. The degree of correlation is reflected in the
correlation coefficient R as computed through use of the following equation:

[IXY - (IXTY)/NP

R? = (3-16)

[£X2 - (3X)¥/N] [TY? - (TY)¥/N]

where:
R2 = the determination coefficient
Y = the value at the short-record station
= the concurrent value at the long-record station

N = the number of years of concurrent record

3-13
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For most studies involving streamflow values, it is appropriate to use the logarithms of the
values in the equations in this section.

c. Adjustment of Mean. The following equation is used to adjust the mean of a
short-record station on the basis of a nearby longer-record station:

Y = Y, +(X5- X RS, /5y) (3-17)

where:

~<|
"

the adjusted mean at the short-record station

= the mean for the concurrent record at the short-record station

=<

the mean for the complete record at the longer-record station

Xl Xl
w
]

-l

= the mean for the concurrent record at the longer-record station
R = the correlation coefficient

Sv., = the standard deviation for the concurrent record at the short-record station
= the standard deviation for the concurrent record at the longer-record

SX
1 .
station

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. The criterion for determining if the variance of
the adjusted mean will likely be less than the variance of the concurrent record is:

R? > 1/(N, - 2) (3-18)

where N, equals the number of years of concurrent record. If R? is less than the
criterion, Equation 3-17 should not be applied. In this case just use the computed mean at
the short-record station or check another nearby long-record station. See Appendix 7 of
Bulletin 17B for procedures to compare the variance of the adjusted mean against the
variance of the entire short-record period.

d. Adijustment of Standard Deviation. The following equation can be used to adjust

the standard deviation:

¢ = S +(82- 82) R%S,2/8,2) (3-19)

{approximate)
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where:
S, = the adjusted standard deviation at the short-record station

S, = the standard deviation for the period of concurrent record at the short-record
station

S, = the standard deviation for the complete record at the base station

S, = the standard deviation for the period of concurrent record at the base station

R? = the determination coefficient

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. This equation [‘JfO‘v‘iue‘:S approximate results
compared to Equation 3-19 in Appendix 7 of Bulletin 17B, but in most cases the

difference in the results does not justify the additional computations.

e. Adjustment of Skew coefficient. There is no equation to a_djust the skew

coefficient that is comparable to the above equations. When adjusting the statistics of
annual flood peaks either a weighted or a generalized skew coefficient may be used
depending on the record length.

f. Equivalent Record Length. The final step in adjusting the statistics is the
computation of the "equivalent record length” which is defined as the period of time
which would be required to establish unadjusted statistics that are as reliable (in a
statistical sense) as the adjusted values. Thus, the equivalent length of record is an
indirect indication of the reliability of the adjusted values of Y and Sy. The equivalent
record length for the adjusted mean is computed from the following equatlon

NY
N, = 1 (3-20)

I - [(Ny - Ny )/N [R? - (1 - R3/(Ny, - 3)]

where
N, = the equivalent length of record of the mean at the short-record station
Nv1 = the number of years of concurrent record at the two stations
N, = the number of years of record at the longer-record station

R = the adjusted correlation coefficient

Figure 3-4 shows the data and computations for a two-station comparison for a short
record station with 21 events and a long record station with 60 systematic events. It can
be seen that the adjustment of the frequency statistics provides an increased reliability in
the mean equivalent to having an additional 17 years of record at the short-record station.
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TATISTICS OF DATA

Yeor Flow Long Record Short

Record

Chattoogas Talluleh Not
River River Total Concurrent Concurrent

1915 12600 Systematic Events 60 21 39 21
1917 14000
1918 5900 Mistoric Period 7" [+] ] 0
1919 16000
1920 8200 Log Mesn 3.8866 3.9310 3.84650 3.4796
1921 4100
1922 6200 Standard Deviation [0.2322 0.2678 0.2140 0.2609
1923 5300
1924 9200 Computed 0.5075 0.1588 0.7340 -0.0811
1925 3900 Skew Generalized - - - -
1926 6200 Adopted - - - -0.1000
1927 3600
1928 20100
1929 11400 COMPUTATIONS FOR TWO-STATION COMPARISON:
1940 29000°*
1941 7530 Slope: b = 0.790495
1942 6870 Correlation Coefficient: R =0.811351 (See figure 9-01)
1943 6870
1944 3840 From equations 19, 21, and 22:
1945 2930
1946 6650 Yy = 3.4796 » 0.790495 (3.8866 +« 3.9310)
1947 6440
1948 12400 Yy = 3.4445
1949 13900 2 2 2 2
1950 4740 S'z = [(0.2322)° - (0.2678)°1(0.81146)°(0.2609/0.2678)
1951 5220 2
1952 13400 * (0.2609)
1953 4020 SY = 0.2386
1954 6230
1955 5820 21
1956 5820 Yy T T o eses - Lo0.any; %8
1957 5820 —rr— (0 3 B
1958 5620
B4 €=0.0 MSE; =0.302 G=-0.0811 MSE; = 0.142
ey D (0.302)(-0.0811) + (0.0142)(0.0)
s 0 Oy = 5.307 + 0.142
1963 5420 ° )
1964 9880
1965 27200 7440 Gy = -0.055 = -0.1
1966 13400 5140
1967 15400 2800
1968 5620 3100 FREQUENCY CURVE, TALLULAN RIVER NEAR CLAYTOMN, GA
1969 14700 2470
1970 3480 2010 esaeeosFLOW,CFS........ PERCENT ..CONFIDENCE LIMITS..
97 3290 976 EXPECTED CHANCE
1972 T440 2160 COMPUTED PROBABILITY EXCEEDANCE .05 LIMIT .95 LIMIT
1973 19600 3500
1974 6400 4660 12700 14200 .2 18800 9580
1975 6340 2610 10900 11900 .5 15600 8410
1976 18500 6530 9590 10300 1.0 13400 7540
1977 13000 3580 8350 8800 2.0 11300 6680
1978 7850 4090 6760 6990 5.0 8810 5550
1979 14800 6240 5590 5710 10.0 7040 4680
1980 10900 2880 4430 4480 20.0 5370 3780
1981 4120 1600 2810 2810 50.0 3260 2420
1982 5000 1960 1760 1740 80.0 2060 1450
1983 7910 3260 1370 1340 90.0 1640 1080
1984 4810 2000 1110 1070 95.0 1360 847
1985 4740 1010 745 636 99.0 957 524

* Historic information, pesk largest since 1915,

Figure 3-4. Two-Station Comparison Computations.
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(Figure 9-1 shows the computations for b and R and Figure 9-2 shows the Tallulah River
annual peaks plotted against the Chattooga River peaks.) Figure 3-5 shows the resulting
unadjusted and adjusted frequency curves based on the computed and adjusted statistics
in Flgure 3-4. Although N_ is actually the equwalent years of record for the mean, the
value is used as an estimate equivalent record length in the computation of conf:dence
limits and the expected probability adjustment.

§ummgry of Steps. The procedure for computing and adjusting frequency
staustlcs using a longer-record station can be summarized as follows:

(1) Arrange the streamflow data by pairs in order of chronological sequence.
(2) Compute ?1 and S‘r1 for the entire record at the short-record station.
(3) Compute X and Sy for the entire record at the longer-record station.

(4) Compute X and S, for the pornon of the longer-record station which is
concurrent with the shox’t record station.

(5) Compute the correlation coefficient using Equation 3-16.

(6) Compute Y and Sy for the short-record station using Equations 3-17 and 3-18.

105 Tallulah River near Cl-uton, QA
H - --- Expected Probability Curve from Data
| | —we—— Expected Probability Curve from Two-Station Comparison
o 4 1- “
G 10
- =
3 ol
] —1<
T L
X
[}
]
a o
-4
3
3
c
£ 10
<
102
99.99 99.9 99 90 50 ie 1 P .91

Percant Chance Excaesdsnce

Figure 3-5. Observed and Two-Station Comparison Frequency Curves.
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(7) Calculate the equivalent length of record of the mean for the short-record station
using Equation 3-20.

(8) Compute the frequency curve using adjusted values of Y and S in Equation 3-4
and K values from Appendix F-2 corresponding to the adopted skew coefficient.

(9) Compute the expected probability adjustment and the confidence limits.

3-8. Flood Volumes.

a. Nature and Purpose. Flood volume frequency studies involve frequency analysis
of maximum runoff within each of a set of specified durations. Flood volume-duration
data normally obtained from the USGS WATSTORE files consists of data for 1, 3, 7, 15,
30, 60, 90, 120, and 183 days. These same values are the default values in the HEC
computer program STATS (Table 3-2). Runoff volumes are expressed as average flows in
order that peak flows and volumes can be readily compared and coordinated. Whenever it
is necessary to consider flows separately for a portion of the water year such as the rain
season or snowmelt season, the same durations (up to the 30-day or 90-day values) are
selected from flows during that season only. Flood volume-~duration curves are used
primarily for reservoir design and operation studies, and should generally be developed in
the design of reservoirs having flood control as 2 major function.

Table 3-2. High Fiow Volume-Duration Data
- VOLUME-DURATION DATA - FISHKILL CR AT BEACON, NY - DAILY FLOWS

HIGHEST MEAN VALUE FOR DURATION, FLOW,CFS

YEAR 1 3 7 15 30 60 90 120 183

1845 2080.0 1936.7 1714.3 1398.7 1106.8 752.3 742.2 649.4 559.2
1946 1360.0 1180.3 923.0 837.3 §57.8 605.2 476.2 451.5 379.9
1947 1800.0 1616.7 1159.1 820.5 687.1 611.9 558.5 485.8 396.4
1948 2660.0 2430.0 2322.9 1641.7 1145.1 862.0 706.2 638.1 512.7
1948 2900.0 2346.7 1715.7 1358.9 888.9 680.7 586.8 522.4 422.4
1850 1050.0 908.7 746.9 639.7 588.1 455.9 423.0 387.2 335.1
1951 2160.0 1886.7 1744 .3 1248.1 872.8 832.1 781.2 689.8 568.9
1952 2870.0 2266.7 1557.6 1186.5 1032.8 925.1 854.1 732.6 692.9
1953 2850.0 2233.3 1644.3 1317.2 1145.5 984.6 831.1 794 .4 654.5
1854 1520.0 1096.7 811.7 620.4 482.9 397.0 405.7 372.7 348.1
1855 6970.0 4536.7 2546.1 1360.0 758.2 608.0 494.0 463.1 478.7
1956 6760.0 5456.7 3354.3 1959.7 1572.8 1080.9 767.7 635.8 641.7
1957 1230.0 1117.3 1037.7 758.9 524.2 408.8 363.3 373.4 324.4
1958 2130.0 1916.7 1587.1 1354.5 1128.1 872.0 848.2 777.8 654.1
1859 1670.0 986.7 782.1 586.6 517.6 486.7 437.5 398.8 346.2
1860 2080.0 1770.0 1374.3 1046.9 712.3 605.5 530.5 515.1 468.4
1861 3440.0 2966.7 2155.7 1590.2 1152.3 845.2 759.5 656.2 491.4
1962 2570.0 2070.0 1547.7 1105.0 857.7 600.9 461.3 429.4 325.0
1863 1730.0 1616.7 1309.0 1216.0 800.8 569.1 438.0 370.8 305.9
1864 1300.0 1106.7 945.3 737.8 541.2 514.8 486.6 450.1 368.3
1965 900.0 826.3 652.6 455.7 375.8 303.3 275.7 235.¢0 175.0
1966 830.0 774.7 693.3 546.5 445.7 352.5 296.2 272.5 208.0
1967 1520.0 1416.7 1247.1 1023.5 906.8 701.3 581.4 521.1 436.8
1968 3500.0 2810.0 1934.3 1328.5 878.7 611.7 609.5 567.3 460.3

Note - Data based on water year of October 1 of preceeding year through September 30
of given year.
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b. Data for Comprehensive Series. Data to be used for a comprehensive flood
volume-~duration frequency study should be selected from nearly complete water year
records. Unless overriding reasons exist, the durations in Table 3-2 should be used in
order to assure consistency among various studies for comparison purposes. Maximum
flood events should be selected only for those years when recorder gages existed or when
the maximum events can be estimated by other means. Where a minor portion of a water
year’s record is missing, the longer-duration flood volumes for that year can often be
esiimated adequately. If upsiream regulation or diversion is known to have an effect, care
should be exercxsed to assure that the period selected is t e one when flows would have

)

7

J
r

c. Statistics for Comprehensive Series.

(1) The probability distribution recommended for flood volume-duration frequency
computations 1s the log-Pearson type III distribution; the same as that used for annual
f lood peaks. In practice only the f irst two moments mean and standard deviations are

based on SKdllUl’I data. As GISCUSSBQ lﬂ DCLUU“ J .), the skew LUC[[]L]CI’I[ Sl'lUUlU not be

based solely on the station record, but should be weighted with information from regional
studies, To insure that the frequencv curves for each duration are consistent. and

DA LIS ] L= a0 2ASUI0 RN AT TR RAL Y LRIVOe TV LAkl LRIl QX LOSAR AN,

especially to prevent the curves from crossing, it is desirable to coordinate the variation in
standard deviation and skew with that of the mean. This can be done graphically as
shown in Figure 2-6. For a given skew coefficient, there is a maximum and minimum
allowable slope for the standard deviation-versus-mean relation which prevents the curves
from crossing within the estabiished limits. For instance, to keep the curves from crossing
within 99.99 and .01 percent chance exceedances with a skew of 0., the slope must not

axraad Y60 nar ha lace than YEQ racmantivaly Tha valua Af thie ﬂ‘l\nA fancrraint 1o
TAWVVUL LUJ, HIVI VL IV LAl T.oVU T, IGOPG\-LIVUI] RIIv Valuv Vi WU iVpPe wULDtI allit IB

found by stating that the value of one curve (X, for curve A) must equal or exceed the
value for a second curve (X_ for curve B) at the desired exceedance frequency. Each of
these values can be found by substitution into Equation 3-4 (the K for zero skew and
99.99 percent chance exceedance is -3.719):

X 2 X4
X, +(-3.7119)S, > X;+(-3.719)S,
3719 (S-S > X;-X,
B > 0.269
(X - X,)
where:

X, = Value of frequency curve A at 99.99 percent chance exceedance
Xg = Vaiue of frequency curve B at 99.99 percent chance exceedance
X, = Mean of frequency curve A
ie = Mean of frequency curve B
SA = Standard deviation of frequency curve A
S, = Standard deviation of frequency curve B

)
t
D
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Figure 3-6. Coordination of Flood-Volume Statistics.
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(2) When the skew changes between durations, it is probably easiest to adopt
smoothed relations for the standard deviation and skew and input the statistics into a
computer program that computes the ordinates. The curves can then be inspected for

consistency.

(3) If the statistics for the peak flows have been computed according to the
procedures in Bulletin 17B, the smoothing relations shouid be forced through those points.
The procedure for computing a least-squares line through a given intersection can be
found in texts describing regression analyses.

omprehensiv

(1) General Procedure. Frequency curves of flood volumes are computed
analytically using general principles and methods of Chapters 2 and 3. They should also

be shown graphically and compared with the data on which they are based. This is a
general check on the analytic work and will ordinarily reveal any inconsistency in data
and methodology. The computed frequency curves and the observed data should be
plotted on a single sheet for comparison purposes, Figure 3-7.

FISHKILL CREEK AT BEACON, NY 1845-1968
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Figure 3-7. Flood-Volume Frequency Curves.
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(2) Interpolation Between Fixed Durations. The runoff volume for any specified

frequency can be determined for any duration between 1-day and 365-days by drawing a
curve on logarithmic paper relating mean discharge (or volume) to duration for that
specified frequency (see Figure 3-8a). When runoff volumes for durations shorter than 24
hours are important, special frequency studies should be made. These could be done in
the same manner as for the longer durations, using skew coefficients interpolated in some

reasonable manner between those used for peak and 1-day flows.
e. Applications of Fl Volume-Duration Fr nci

(1) Volume-duration Curves. The use of flood volume-duration frequencies in
solving reservoir planning, design, and operation problems usually involves the
construction of volume-duration curves for specified frequencies. These are drawn first
on logarithmic paper for interpolation purposes, as illustrated on Figure 3-8a. The mean
discharge values are multiplied by appropriate durations to obtain volumes and are then
replotted on an arithmetic grid as shown on the Figure 3-8b. A straight line on this grid
represents a constant rate of flow. The straight line represents a uniform flow of 1,500
cfs, and the maximum departure from the 2% chance exceedance curve demonstrates that
a reservoir capacity of 16,000 cfs-days (31,700 acre-feet) is required to control the
indicated runoff volumes by a constant release of 1,500 cfs. The curve also indicates that
a duration of about 8 days is critical for this project release rate and associated

flood-control storage space.

2) licati ingle Reservoir. In the case of a single flood-control reservoir
located immediately upstream of a single damage center, the volume frequency problems
are relatively simple. A series of volume-duration curves, similar to that shown on Figure
3-8, corresponding to selected exceedance frequencies should first be drawn. The project
release rate should be determined, giving due consideration to possible channel
deterioration, encroachment into the flood plain, and operational contingencies. This
procedure can be used not only as an approximate aid in selecting a reservoir capacity, but
also as an aid in drawing filling-frequency curves.

(3) Application to a Reservoir System. In solving complex reservoir problems,

representative hydrographs at all locations can be patterned after one or more past floods.
The ordinates of these hydrographs can be adjusted so that their volumes for the critical
durations will equal corresponding magnitudes at each location for the selected frequency.
A design or operation scheme based on regulation of such a set of hydrographs would be
reasonably well balanced. Some aspects of this problem are described in Section 3-9g.

3-9. Effects of Flood Contrgl Works on Flood Frequencies.

a. Nature of the Problem. Flood control reservoirs are designed to substantially
affect the frequency of flood flows (or flood stages) at various downstream locations.
Many land use changes such as urbanization, forest clearing, etc. can also have significant
effects on downstream flood flows (see Section 3-10). Channel improvements (intended to
reduce stages) and levee improvements (intended to confine flows) at specified locations
can substantially affect downstream flows by eliminating some of the natural storage
effects. Levees can also create backwater conditions that affect river stages for a
considerable distance upstream. The degree to which flows and stages are modified by
various flood control works or land use changes can depend on the timing, areal
distribution and magnitude of rainfall (and snowmelt, if pertinent) causing the flood.
Accordingly, the studies should include evaluations of the effects on representative flood
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events, with careful consideration given to the effects of different temporal and areal
distributions.

b. Terminology.

(1) Natural Conditions. Natural conditions in the drainage basin are defined as
hydrologic conditions that would prevail if no regulatory works or other works of man
were constructed. Natural conditions, however, include the effects of natural lakes,
swamp areas, etc.

(2) Present Conditions. Present or base conditions are defined as the conditions that
exist as of the date of the study or some specified time.

(3) Without-Project Conditions. Without-project conditions are defined as the

conditions that would exist without the projects under consideration, but with all existing
projects and may include future projects whose construction is imminent.

(4) With-Project Conditions. With-project conditions are defined as the conditions
that will exist after the projects under consideration are completed.

c. rvoir-Level Fr jon.
(1) Factors to be Considered. Factors affecting the frequency of reservoir levels

include historical inflow rates and anticipated future inflow rates estimated by
volume-frequency studies, the storage-elevation curves, and the plan of reservoir
regulation including location and size of reservoir outlets and spillway. A true frequency
curve of annual maxima or minima can only be computed when the reservoir completely
fills every year. Otherwise, the events would not be independent. If there is dependence
between annual events, the ordinate should be labeled "percent of years exceeded" for
maximum events and "percent of years not exceeded" for minimum events.

(2) Computation and Presentation of Results. A frequency curve of annual

maximum reservoir elevations (or stages) is ordinarily constructed graphically, using
procedures outlined in Section 2-4. Observed elevations (or stages) are used to the extent
that these are available, if the reservoir operation will remain the same in the future.
Historical and/or large hypothetical floods may also be routed through the reservoir using
future operating plans. A typical frequency curve is illustrated on Figure 6-4.
Elevation-duration curves are constructed from historical operation data or from routings
of historical runoff in accordance with procedures discussed in Section 2-2, Figure 3-9.
Such curves may be constructed for the entire period of record or for a selected wet
period or dry period. For many purposes, particularly recreation uses, the seasonal
variation of reservoir elevation (stages) is important. In this case a set of frequency or
duration curves for each month of the year may be valuable. One format for presenting
this information is illustrated on Figure 3-10.
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d. Effects of Reservoirs on Flows at Downstream Points.
(1) Routing for Period of Record. The frequency of reservoir outflows or of flows

at a downstream location can be obtained from routings of the period-of-record runoff by
the following methods:

(a) Determine the annual maximum flow at each location of interest and construct a
frequency curve of the regulated flows by graphical techniques (Section 2-4).

{b) Construct a graph of with-project versus without-project flows at the location of
interest and draw a curve relating the two quantities as illustrated on Figure 3-11. The
points should be balanced in the direction transverse to the curve, but factors such as
flood volume of the events and reliability of regulation must be considered in drawing the
curve. This curve can be used in conjunction with a frequency curve of without-project
flows to construct a frequency curve of with-project flows as illustrated on Figure 3-12.
This latter procedure assures consistency in the analysis and gives a graphical presentation
of the variability of the regulated events for a given unregulated flow.

(2) Use of Hvpothetical-Flood Routings. Usually recorded values of flows are not

large enough to define the upper end of the regulated frequency curve. In such cases, it is
usually possible to use one or more large hypothetical floods (whose frequency can be
estimated from the frequency curve of unregulated flows) to establish the corresponding
magnitude of regulated flows. These floods can be multiples of the largest observed
floods or of floods computed from rainfall; but it is best not to multiply any one flood by
a factor greater than two or three. The floods are best selected or adjusted to represent
about equal severity in terms of runoff frequency of peak and volumes for various
durations. The routings should be made under reasonably conservative assumptions as to
initial reservoir stages.

(3) Incidental Control by Water Supply Space. In constructing fre Tuency curves of

regulated flows, it must be recognized that reservoir operation for purp :es other than
flood control will frequently provide incidental regulation of floods. H..wever, the
availability of such space cannot usually be depended upon, and its value is considerably
diminished for this reason. Consequently, the effects of such space on the reduction of
floods should be estimated very conservatively.

(4) Allowan r rational ingencies. In constructing frequency curves of
regulated flows, it should be recognized that actual operation is rarely perfect and that
releases will frequently be curtailed or diminished because of unforeseen operation
contingencies. Also, where flood forecasts are involved in the reservoir operation, it must
be recognized that these are subject to considerable uncertainty and that some allowance
for uncertainty will be made during operation. In accounting for these factors, it will be
found that the actual control of floods is somewhat less than could be expected if full
release capacities and downstream channel capacities were utilized efficiently and if all
forecasts were exact.

(5) Runoff from Unregulated Areas. In estimating the frequency of runoff at a

location that is a considerable distance downstream from one or more reservoir projects, it
must be recognized that none of the runoff from the intermediate areas between the
reservoir(s) and the damage center will be regulated. This factor can be accounted for by
constructing a frequency curve of the runoff from the intermediate area, and using this
curve as an indicator of the lower limit for the curve of regulated flows. Streamflow
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routing and combining of both the flows from the unregulated area and those from the
regulated area is the best procedure for deriving the regulated frequency curve.

. f Channel v nd Floodw mprovements. The effect of channel,
levee and floodway improvements on river stages at the project location and on river
discharges downstream from the project location can generally be evaluated by routing
several typical floods through the reaches of the improvement and the upstream reaches
affected by backwater. The stages or discharges thus derived can be plotted against
corresponding without- project values, and a smooth curve drawn. This curve could be
used in conjunction with a frequency curve of without-project values to construct a
frequency curve of with-project values as discussed in Paragraph 3-09d(1)b.
Corresponding stages upstream from the selected control point can be estimated from
water-surface profile computations.

han in -Dischgr ionships. Changes in stage-discharge relations
due to channel improvements, levee construction or flow obstructions can best be
evaluated by computing theoretical water surface profiles for each of a number of
discharges. The resulting relationships for modified conditions can be used to modify
routing criteria to enable evaluation of the downstream effects of these changes.

g. Effects of Multiple Reservoir Systems.

(1) Representative events. When more than one reservoir exists above a damage
center, the problem of evaluating reservoir stages and downstream flows under project
conditions becomes increasingly complex. Whenever practicable, it is best to make
complete routings of five to ten historic flood events and a large event that has been
developed from a hypothetical rainfall pattern. If necessary, it is possible to supplement
these events by using multiples of the flow values. Care muse be exercised in selecting
events that have representative flood volumes, timings, and areal distributions. Also,
there should be a balance of events caused by particular climatic factors, i.e. snowmelt,
tropical storm, thunderstorm, etc. Furthermore, the flood-volume-duration characteristics
of the hypothetical events should be similar to the recorded events (see Section 3-8).
Hypothetical events must be used with caution, however, because certain characteristics of
atypical floods may be responsible for critical flooding conditions. Accordingly, such
studies should be supplemented by a critical examination of the potential effects of atypical
floods.

(2) Computer Program. It is generally impossible to make all of the flood routings
necessary to evaluate the effect of a reservoir system by hand computations. Computer
programs have been developed to route floods through a reservoir system with complex
operational criteria (55).

3-10. Effects of Urbanization,

a. General Effects. Urbanization has two major effects on the watershed which
influence the runoff characteristics. First, there is a substantial increase in the impervious
area, which results in more water entering the stream system as direct runoff. Second, the
drainage system collecting the runoff is generally more efficient and tends to concentrate
the water faster in the downstream portion of the channel system. It is important to keep
these two effects in mind when considering the changes in the flood peak frequency curve
caused by increasing urbanization.
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b. Effect on Freguencv Relations. A general statement can be made about the
effects of urbanization on flood-peak frequency relations. The usual effect on the
frequency relation is to cause a significant increase in the magnitude of the more frequent
events, but a lesser increase in the less frequent events. This results in an increase in the
mean of the annual flood peaks, a decrease in the standard deviation and an unpredictable
effect on the skew coefficient (see Figure 3-13). The resulting frequency relation may
not fit any of the standard theoretical distributions. Graphical techniques should be
applied if a good fit is not possible by an analytical distribution.

c. Other Considerations. The actual effect of urbanization at a specific location is
dependent on many factors. Some of the factors that must be considered are basin slope,
basin shape, previous land use and ground cover, number of depressional areas drained,
magnitude and nature of urban development and the typical flood source (snowmelt,
thunderstorm, hurricane, or frontal storm).It is possible for urbanization to cause a
decrease in the flood peaks at a particular site. For instance, consider an area downstream
of two tributary areas of such size and shape that the large floods are caused by the
addition of the nearly coincident peaks from the two tributaries. Urbanization in one of
the tributary areas will likely cause the contribution from this area to arrive downstream
earlier. This change in the timing of the peaks would result in lower downstream peaks.
Of course, when both areas have become equally urbanized, the flood peaks may coincide
again. The construction of bridges or other encroachments can reduce the flood peak
downstream, but causes backwater flooding upstream.
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Figure 3-13. Typical Effect of Urbanization on Flood Frequency Curves.
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d. Adjustment of a Series of Nonstationary Peak Discharges. When the annual peak

discharges have been recorded at the outlet of a basin which has been undergoing
progressive urbanization during the period of record, the peak discharges are
nonstationary because of the varying basin condition. It is generally necessary to adjust
the discharges to a stationary series representative of existing conditions. One approach
to adjusting the peaks to a stationary series is as follows:

(1) Develop and calibrate a rainfall~runoff model! for existing basin conditions and
for conditions at several other points in time during the period of record.

(2) Develop a hypothetical storm for the basin using generalized rainfall criteria,
such as that contained in Weather Bureau Technical Paper 40 (14). Select the
magnitude of the storm, e.g., a 25-year recurrence interval, to be used. The
recurrence interval is arbitrary as it is not assumed in this approach that runoff
frequency is equal to rainfall frequency. The purpose of adopting a specific
magnitude is to establish a base storm to which ratios can be applied for subsequent
steps in the analysis.

(3) Apply several ratios (say 5 to 8) to the hypothetical storm developed in the
previous step such that the resulting calculated peak discharges at the gage will cover
the range desired for frequency analysis. Input the balanced storms to the
rainfall-runoff model for each of the basin conditions selected in step (1), and
determine peak discharges at the gaged location.

(4) From the results of step (3), plot curves representing peak discharge versus storm
ratio for each basin condition (or point in time).

(5) Use the curves developed in step (4) to adjust the observed annual peak
discharges. For example, an observed annual peak discharge that occurred in 1975 is
adjusted by entering the "1975" curve (or interpolating) with that discharge, locating
the frequency of that event, and reading the magnitude of the adjusted peak from
the base-condition curve for the same frequency. The adjusted peak thus obtained is
assumed to be the peak discharge that would have occurred for the catchment area
and development at the base condition. It is not necessary to adjust to natural
conditions. A stationary series could be developed for one or more points in time.

(6) A conventional frequency analysis can be performed on the adjusted peak
discharges determined in the preceding step. If the data represent natural conditions,
Bulletin 17B procedures would be applicable. If the basin conditions represent
significant urbanization, graphical analysis may be appropriate.

e. Development of Frequency Curves at Ungaged Sites. There are several

approaches that can be taken to develop frequency curves at ungaged sites that have been
subject to urbanization. In order of increasing difficulty, they are: 1) application of
simple transfer procedures (e.g., Q = CIA); 2) application of available region-specific
criteria, e.g., USGS regression equations; 3) application of rainfall-runoff models to
hypothetical storm events; 4) application of simple and detailed rainfall-runoff models
with observed storm events and 5) complete period-of-record simulation. As approaches
(3) and (4) are often applied, the computational steps are presented in some detail.
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(1) Hypothetical Storm Approach

(a) Develop peak-discharge frequency curve for specific land use conditions
from available gaged data and/or regional relationships.

(b) Qevelop balanced storms of various frequencies using data from generalized
criteria, a nearby gage or the equivalent.

(¢) Develop rainfall-runoff model for the specific watershed with the adopted
land-use conditions. Calibrate runoff and routing parameters by reproducing
observed hydrographs occurring under natural conditions.

(d) Input balanced storms (from b) to rainfall-runoff model (from c).
Determine exceedance probabilities to associate with balanced storms from
adopted specific land-use conditions peak discharge frequency curve (from a)
with computed peak discharges.

(e) Modify parameters of rainfall-runoff model to reflect future urban runoff
characteristics. Input balanced storms to the urban- conditions model.

(f) Plot results assuming frequency of each event is the same for both the
adopted land use and the future urban conditions.

(2) "Simple” and Detailed Simulation of Historic Events

(a) Simulate all major historic events with a relatively simple model to establish
the ranking of events and an approximate peak discharge for each. The
approximate peaks could be developed by using a multiple linear regression
approach, by using a very simple rainfall-runoff model, or by any other
approach that will capture the hydrologic response of the basin.

(b) Perform a conventional frequency analysis of the approximate peaks
obtained in step a.

(c) Make detailed simulations of selected events and correlate the more precise
peaks with the approximate peaks.

(d) Use the relationship developed in step c to determine the desired frequency
curve. The same approach can be followed for both existing and future
conditions.
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