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CHAPTER VI-6
Reliability Based Design of Coastal Structures
VI-6-1. Introduction.

a. Conventional design practice for coastal structures is deterministic in nature and is
based on the concept of a design load which should not exceed the resistance (carrying capacity)
of the structure. The design load is usually defined on a probabilistic basis as a characteristic
value of the load, for example the expectation (mean) value of the 100-year return period event.
However, this selection is often made without consideration of the involved uncertainties. In
most cases the resistance is defined in terms of the load that causes a certain design impact or
damage to the structure, and it is not given as an ultimate force or deformation. This is because
most of the available design formulae only give the relationship between wave characteristics
and some structural response, such as runup, overtopping, armor layer damage, etc. An example
is the Hudson formula for armor layer stability.

b. Almost all coastal structure design formulae are semiempirical and based mainly on
central fitting to model test results. The often considerable scatter in test results is not considered
in general because the formulae normally express only the mean values. Consequently, the
applied characteristic value of the resistance is then the mean value and not a lower fractile as is
usually the case in other civil engineering fields. The only contribution to a safety margin in the
design is inherent in the choice of the return period for the design load. (The exception is when
the design curve is fitted to the conservative side of the data envelope to give a built-in safety
margin.) It is now more common to choose the return period with due consideration of the
encounter probability, i.e., the probability that the design load value is exceeded during the
structure lifetime. This is an important step towards a consistent probabilistic approach.

c. In addition to design load probability, a safety factor (as given in some national
standards) might be applied as well, in which case the method is classified as a Level |
(deterministic/quasi-probabilistic) method. However, this approach does not allow determination
of the reliability (or the failure probability) of the design; and consequently, it is not possible to
optimize structure design or avoid overdesign of a structure. In order to overcome this problem,
more advanced probabilistic methods must be applied where the uncertainties (the stochastic
properties) of the involved loading and strength variables are considered.

d. Methods where the actual distribution functions for the variables are taken into
account are denoted as Level III methods. Level I methods generally transform correlated and
non-normally distributed variables into uncorrelated and standard normal distributed variables,
and reliability indices are used as measures of the structural reliability. Both Level II and III
methods are discussed in the following sections. Also described is an advanced partial
coefficient system which takes into account the stochastic properties of the variables and makes
it possible to design a structure for a specific failure probability level.

VI-6-1



EM 1110-2-1100 (Part VI)
Change 3 (28 Sep 11)

V1-6-2. Failure Modes and Failure Functions.

a. Evaluation of structural safety is always related to the structural response as defined
by the failure modes. Failure modes for various structures are presented in Part VI-2-4, “Failure
Modes of Typical Structure Types.”

b. Each failure mode must be described by a formula, and the interaction (correlation)
between the failure modes must be known. As an illustrative example consider only one failure
mode, “hydraulic stability of the main armor layer” described by the Hudson formula

= H

= (VI-6-1)
KpA cota

where
D,, = nominal block diameter
A=ps/pyw-1
ps = block density
pw = water density
o. = armor slope angle
H; = significant wave height

Kp = coefficient signifying the degree of damage (movements of the blocks)

load res

c. The formula can be split into load variables X;*“ and resistance variables, X; .
Whether a parameter is a load or a resistance parameter can be seen from the failure function. If
a larger value of a parameter results in a safer structure, it is a resistance parameter; and if a
larger value results in a less safe structure, it is a load parameter.

d. According to this definition one specific parameter can in one formula act as a load
parameter while in another formula the same parameter can act as a resistance parameter. An
example 1s the wave steepness parameter in the van der Meer formulas for rock, which is a load
parameter in the case of surging waves, but a resistance parameter in the case of plunging waves.
The only load variable in Equation VI-6-1 is H, while the others are resistance variables.

e. Equation VI-6-1 is formulated as a failure function (performance function)

<0 failure
g=A*A*D,(Kpcota)”-H, =0 limit state ( failure) (VI-6-2)
>0 no failure (safe region)
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f. All the involved parameters are regarded as stochastic variables, X;, except Kp,
which signifies the failure, i.c., a specific damage level chosen by the designer. The factor 4 in
Equation VI-6-2 is also a stochastic variable signifying the uncertainty of the formula. In this
case the mean value of 4 is 1.0.

g. In general Equation VI-6-2 is formulated as

g=R-S§ (VI-6-3)

where R stands for resistance and S for loading. Usually R and S are functions of many random
variables, i.e.,

R=R (X" X5, ..., Xi') and S=S(xb,..., xi") or g=g(X)
The limit state is given by
g=0 (VI-6-4)

which is denoted the /imit state equation and defines the so-called failure surface which
separates the safe region from the failure region.

h. In principle, R is a variable representing the variations in resistance between
nominally identical structures, whereas S represents the maximum load effects within a period of
time, for instance 7 successive years. The distributions of R and S are both assumed independent
of time. The probability of failure, Py, during any reference period of duration 7 years is then
given by

P, =Prob(g <0) (VI-6-5)
i. The reliability Ryis defined as
R, =1-P, (VI-6-6)

V1-6-3. Single Failure Modes Probability Analysis.

a. Level III methods.

(1) A simple method (in principle) of estimating Pris the Monte Carlo method where a
very large number of realizations x of the variables X are simulated. Pris then approximated by
the proportion of the simulations where g # 0. The reliability of the Monte Carlo method depends
on a realistic assessment of the distribution functions for the variables X and their correlations.

(2) Given f+ as the joint probability density function (jpdf’) of the vector X =(X,X,
... , X ), then Equation VI-6-5 can be expressed by

VI-6-3
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b= f res [z (¥)dX (VI-6-7)

(3) Note that the symbol x is used for values of the random variable X. If only two
variables R and S are considered then Equation VI-6-7 reduces to

Pr=lres fins (rss)drds (VI-6-8)

which is conceptually illustrated in Figure VI-6-1. If more than two variables are involved it is
not possible to describe the jpdf as a surface but requires an imaginary multidimensional
description.

(4) Figure VI-6-1 also shows the so-called design point which is the point of failure
surface where the joint probability density function attains the maximum value, i.e., the most
probable point of failure.

A s
fris Failure surface
g=r—-s=0
LURIIITIIDITTITINNNRNNY
Unsafe region

Safe region

> Design point

Contours of
constant fgs

s r il

Figure VI-6-1. Illustration of the two-dimensional joint probability density function for loading
and strength

(5) Unfortunately, the jpdfis seldom known. However, the variables can often be

assumed independent (noncorrelated) in which case Equation VI-6-7 is given by the n-fold
integral

Pr=|lf o] £uGe)e ) d i d x, (V1-6-9)

where fy; are the marginal probability density function of the variables X;. The amount of
calculations involved in the multidimensional integration Equation VI-6-9 is enormous if the
number of variables, #, is larger than 5.
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(6) If only two independent variables are considered, e.g., R and S, then Equation VI-6-9
simplifies to

Pf:”m Sr(r) fs(s)drds (VI-6-10)
which by partial integration can be reduced to a single integral
Py=[y Fa(x) fs(x)dx (VI-6-11)

where Fj is the cumulative distribution function for R. Formally the lower integration limit
should be -4, but it is replaced by 0 since, in general, negative strength is not meaningful.

(7) Equation VI-6-11 represents the product of the probabilities of two independent
events, namely the probability that S lies in the range x, x+dx (i.e., fs(x) dx) and the probability
that R # x (i.e., Fr(x)), as shown in Figure VI-6-2.

b. Level Il methods. This section gives a short introduction to reliability calculations at
Level II. Only the so-called first-order reliability method (FORM), where the failure surface is
approximated by a tangent hyberplane at some point, is presented. A more accurate method is the
second-order reliability method (SORM), which uses a quadratic approximation to the failure
surface.

(1) Linear failure functions of normally-distributed random variables.

(a) Assume the loading S(x) and the resistance R(x) for a single failure mode to be
statistically independent and with density functions as illustrated in Figure VI-6-2. The failure
function is given by Equation VI-6-3 and the probability of failure is expressed by Equation
VI-6-10 or Equation VI-6-11.

(b) However, in many cases these functions are not known, but under certain
assumptions the functions might be estimated using only the mean values and standard
deviations. If § and R are assumed to be independent normally distributed variables with known
means and standard deviations, then the linear failure function g = R - S is normally distributed
with mean value,

He=Hp~Hg (VI-6-12)

and standard deviation

6. =~(crt a5 ) (VI-6-13)
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A fs(s) Fr(r)

P S, X
Area = szfFR (x) fg(x) dx
0

B S, X

X

Figure VI-6-2. Illustration of failure probability in case of two independent variables, S and R

The quantity (g - 4, ) /0, will be unit standard normal, and consequently,

Py=prob(g<0)=[", f (x)dx=® (0 - Mg} =D (-p) (VI-6-14)
Gg
where
p=te (VI-6-15)
Gg

is a measure of the probability of failure referred to as the reliability index (Cornell 1969).

Figure VI-6-3 illustrates £ and the reliability index. Note that £ is the inverse of the coefficient of
variation, and it is the distance (in terms of number of standard deviations) from the most
probable value of g (in this case the mean) to the failure surface, g = 0.
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fq (x)

g<0 g>0
Failure Safe domaine

<«

= X

Figure VI-6-3. Illustration of reliability index

(c) If R and S are normally distributed and “correlated,” then Equation VI-6-14 still
holds, but o is given by

6e=+/(ck+ G5 +2 Pasoros ) (VI-6-16)
where pgs is the correlation coefficient

o, 2 CoVRS) EIR-py) (S-ps )] (VI-6-17)

ORrROs ORrROs

R and S are said to be uncorrelated if pgs = 0.

(d) In addition to the illustration of £ in Figure VI-6-3, a simple geometrical
interpretation of f can be given in the case of a linear failure function g = R - S of the
independent variables R and S by a transformation into a normalized coordinate system of the
random variables RN = (R - ug ) /og and SN = (S - us) /os, as shown in Figure VI-6-4.

(e) With these variables the failure surface g = 0 is linear and given by

R'GR-S'GS+HR-HS:O (VI'6'18)
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AS g=r—s=0 AS,
NN

Unsafe
region U‘IﬂSOlf:%
region

Figure VI-6-4. Illustration of § in normalized coordinate system

(f) By geometrical considerations it can be shown that the shortest distance from the
origin to this linear failure surface is equal to in which Equations VI-6-12 and VI-6-13 are used.

pote_ HeiHs (VI-6-19)

2 2
Gg +OrTOs

(2) Nonlinear failure functions of normally-distributed random variables.

(a) If the failure function g=g( X ) 1s nonlinear, then approximate values for x4, and o,

can be obtained by using a linearized failure function. Linearization is generally performed by
retaining only the linear terms of a Taylor-series expansion about some point. However, the
values of x4, and o, , and thus the value of 8, depend on the choice of linearization point.
Moreover, the value of § defined by Equation VI-6-15 will change when different, but
functionally equivalent, nonlinear failure functions are used.

(b) To overcome these problems, a transformation of the basic variables
X=(X,X>-..,X,) into a new set of normalized variables Z=(7, 7,,..., Z, )1s performed.

For uncorrelated normally distributed basic variables X the transformation is

— Xi—uXi

Oy,

Zi (VI-6-20)

in which case [z = 0 and 6z = 1. By this linear transformation the failure surface g =0 in the
x-coordinate system is mapped into a failure surface in the z-coordinate system which also
divides the space into a safe region and a failure region as illustrated in Figure VI-6-5.

(c) Figure VI-6-5 introduces the Hasofer and Lind reliability index Sy, which is defined
as the distance from the origin to the nearest point, D, of the failure surface in the z-coordinate
system (Hasofer and Lind 1974). This point is called the design point. The coordinates of the

VI-6-8
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design point in the original x-coordinate system are the most probable values of the variables X
at failure. Sy, can be formulated as

1/2

min 2 V 2
—_— l I-6- 1
BHZ (; ) 0 z ( )

i=1

Mapping into normalized coordinate system

sz AZ1
Failure region Linearized \ Failure region
failure
surface D ~Design point
Failure surface
i 9(x)=0
Safe region % Safe region
' BrL 22
r \ >
Failure surface
9(2)=0

Figure VI-6-5. Definition of the Hasofer and Lind reliability index, Bz

(d) The special feature of S, , as opposed to S, is that Sy, is related to the failure
“surface” g ( z )=0 which is invariant to the failure function because equivalent failure
functions result in the same failure surface.

(e) The calculation of S and the design point coordinates can be undertaken in a
number of different ways. An iterative method must be used when the failure surface is
nonlinear. A widely used method of calculating Sy is

e Step 1. Select some trial coordinates of the design point in the z-coordinate system

—d _ d d d
z - (ZIBZZ""52n

e Step 2. Calculate o;i=1,2,...,nby

_ %
_azizzd

o

VI-6-9
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e Step 3. Determine a better estimate of ;¢ by

e Step 4. Repeat Steps 2 and 3 to achieve convergence

e Step 5. Evaluate Sy, by

The method is based on the assumption of the existence of only one minimum. However, several
“local” minima might exist. In order to avoid convergence toward a local minima (and thereby
overestimation of Sy and the reliability) several different sets of trial coordinates might be tried.

(3) Nonlinear failure functions of non-normal random variables.

(a) It is not always a reasonable assumption to consider the random variables normally
distributed. For example, parameters characterizing the sea state in long-term wave statistics,
such as Hy, will in general follow extreme distributions (e.g., Gumbel and Weibull). These
distributions are quite different from the normal distribution and cannot be described using only
the mean value and the standard deviation.

(b) For such cases it is still possible to use the reliability index Sz , but an extra
transformation of the non-normal basic variables into normal basic variables must be performed
before S can be determined as previously described.

(c) A commonly used transformation is based on the substitution of the non-normal
distribution of the basic variable X; by a normal distribution in such a way that the density and
distribution functions fy; and Fl; are unchanged at the design point.

(d) If the design point is given by x4, x%,..., x?, then the transformation reads
d
Xi ~H,,
SPE
O,
(VI-6-22)
1 xi - p v
[ (i) = @ 1
O x; O x;

where 1 Ny; and o Ny; are the mean and standard deviation of the approximate (fitted) normal
distribution.

VI-6-10
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(e) Equation VI-6-22 yields

_? (CI)'1 (in(xf/)))

O y.
" [ (VI-6-23)
iy, = xi -0 (Fyx))oy,

(f) Equation VI-6-22 can also be written

d
Xi _/UX,.,

O x:

FX,.(X?):CD( j:q)(Z?):CD(ﬂHL 0(1‘)

(g) Solving with respect to x gives
xi = Fy @B ai) (VI-6-24)

(h) The iterative method presented above for calculation of S, can still be used if for
each step of iteration the values of uNy; and o Ny; given by Equation VI-6-24 are calculated for
those variables where the transformation (Equation VI-6-22) has been used. For correlated
random variables the transformation into noncorrelated variables is used before normalization.

(4) Time-variant random variables. The failure functions within breakwater engineering
are generally of the form

g=/(R)-f(H W,TW) (VI-6-25)

where R represents the resistance variables and H;, W, and T,, are the load variables signifying
the wave height, the water level, and the wave period. The random variables are in general
time-variant.

(a) Discussion of load variables:

e The most important load parameter in breakwater engineering is the wave height. It is
a time-varying quantity which is best modeled as a stochastic process. Distinction is made
between short-term and long-term statistics of the wave heights. Short-term statistics deal with
the distribution of the wave height H during a stationary sequence of a storm, i.e., during a
period of constant H; (or any other characteristic wave height). The short-term wave height
distribution follows the Rayleigh distribution for deepwater waves and some truncated
distribution in the case of shallow-water waves.

e Long-term statistics deal with the distribution of the storms which are then
characterized by the maximum value of H; occurring in each storm. The storm history is given as
the sample (H;;, Hs2,... , Hy ) covering a period of observation, Y. Extreme-value distributions
like the Gumbel and Weibull distributions are then fitted to the data sample. For strongly depth-

VI-6-11
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limited wave conditions a normal distribution with mean value as a function of water depth
might be appropriate.

e The true distribution of H; can be approximated by the distribution of the maximum
value over T years, which is denoted as the distribution of H,'. The calculated failure probability
then refers to the period 7 (which in practice might be the lifetime of the structure) if distribution
functions of the other variables in Equation VI-6-25 are assumed to be unchanged during the
period 7.

e As an example, consider a sample of » independent storms, i.e., Hy;, Hs2, ... , Hyy,
obtained within Y years of observation. Assume that H; follows a Gumbel distribution given by

F(H,) = exp[-¢“""] (VI-6-26)

which is the distribution of H, over a period of Y years with average time span between
observations of Y/n.

e The distribution parameters o and f can be estimated from the data using techniques
such as the maximum likelihood method or the methods of moments. Moreover, the standard
deviations of a and f, signifying the statistical uncertainty due to limited sample size, can also be
estimated.

e The sampling intensity is A = n /Y. Within a T-year reference period the number of
data will be AT. The probability of the maximum value of H; within the period 7' is then

AT
F(HY) = [F(H)" = exp(-e7)] (VI-6-27)
e The expectation (mean) value of H,’ is given by

1 1
poyr = ﬂ-gln{ -ln( l-ﬁﬂ (VI-6-28)

and the standard deviation of H,” (from maximum likelihood estimates) is

& ur = [L{ 1.109+0.514(-ln[ -ln( 1-Lﬂ] N
C| e’ AT
I (VI-6-29)
+O.608(-ln{ -ln( I-Lﬂ j }
AT

e Equation VI-6-29 includes the statistical uncertainty due to limited sample size. Some
uncertainty is related to the estimation of the sample values Hy;, H», ... , Hy, arising from
measurement errors, errors in hindcast models, etc. This uncertainty corresponds to a coefficient
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of variation oy /ups on the order of 5 - 20 percent. The effect of this might be implemented in the
calculations by considering a total standard deviation of

o =, ’O-i'f + o'i[s (VI-6-30)

e In Level II calculations, Equation VI-6-27 is normalized around the design point, and
Equations VI-6-28 and VI-6-29 or VI-6-30 are used for the mean and the standard deviation.

e Instead of substituting H, in Equation VI-6-25 with HST, the following procedure
might be used: Set 7'in Equations VI-6-27 to VI-6-29 to be 1 year. The outcome of the
calculations will then be the probability of failure in a 1-year period, Pr (1 year). If the failure
events of each year are assumed independent for all variables then the failure probability in T
years is

P (T years) =1-[1-p, (1 year)]" (VI-6-31)

e This assumption simplifies the probability estimation somewhat, and for some
structures it is reasonable to assume failure events are independent, e.g., rubble-mound stone
armor stability. However, for some resistance variables, such as concrete strength, it is
unrealistic to assume the events of each year are independent. The calculated values of the
failure probability in T-years using H,'**“" and H," will be different. The difference will be very
small if the variability of H, is much larger than the variability of other variables.

e The water level W is also an important parameter because it influences the structure
freeboard and limits wave heights in shallow-water situations. Consequently, for the general case
it is necessary to consider the joint distribution of H;, W, and T,,. However, for deepwater waves
W is often almost independent (except for barometric effects) of H; and 7}, and can be
approximated as a noncorrelated variable that might be represented by a normal distribution with
a certain standard deviation. The distribution of  is assumed independent of the length of the
reference period 7. In shallow water, W will be correlated with H due to storm surge effects.

e The wave period T, is correlated to H;. As a minimum the mean value and the
standard deviation of 7, and the correlation of 7, with H; should be known in order to perform a
Level II analysis. However, the linear correlation coefficient is not very meaningful because it
gives an insufficient description when the parameters are non-normally distributed. Alternatively
the following approach might be used: From a scatter diagram of H; and 7}, a relationship of the
form 7,, = A f(H,) is established in which the parameter A follows a normal distribution (or some
other distribution) with mean value p, = 1 and a standard deviation o4 which signifies the scatter.
T, can then be replaced by the variable 4 in Equation VI-6-25. The variable 4 is assumed
independent of all other parameters.
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e Generally, the best procedure for coping with the correlations between H,, W, and T,
1s to work on the conditional distributions. Assume the distribution of the maximum value of H,
within the period T'is given as F; (H, VT). Furthermore, assume the conditional distributions F, (W
\H,") and F3 (T,, |H,") are known. Let Z; , Z, and Z; be independent standard normal variables and

cD(Zl) = Fl(HsT)
D(z,) = FoAW|HY)
D(z3) = F3(Twl HY)

e The inverse relationships are given by

H! = Fi[®(z)]
W = Fi[®(z)) | H!]
T,.= Fi®(z)| H!]

e By converting the resistance variables R into standard normal variable Z ,ie., the

resistance term is written f, (R) = f, (z,), then the failure function Equation VI-6-25 becomes
g=fy(z)-f1(Fl®)] . F®(z) | HI] , Fil®(z) HI]) =0

e Because g now comprises only independent standard normal variables, the usual
iteration methods for calculating S, can be applied.

(b) Discussion of resistance parameters:

e The service life of coastal structures spans anywhere between 20 to 100 years. Over
periods of this length a decrease in the structural resistance is to be expected because of various
types of material deterioration. Chemical reaction, thermal effect, and repeated loads (fatigue
load) can cause deterioration of concrete and natural stone leading to disintegration and rounding
of elements. Also the resistance against displacements of armor layers made of randomly placed
armor units will decrease with the number of waves (i.e., with time) due to the stochastic nature
of the resistance. Consequently, for armor layers this means a reduction over time of the D, and
Kp parameters in the Hudson equation.

e Although material effects can greatly influence reliability in some cases, they are not
easy to include in reliability calculations. The main difficulty is the assessment of the variation
with time which depends greatly on the intrinsic characteristics of the placed rock and concrete.
At this time only fairly primitive methods are available for assessment of the relevant material
characteristics. In addition, the variation with time depends very much on the load-history which
can be difficult to estimate for the relevant period of structural life.

e Figure VI-6-6 illustrates an example situation representing the tensile strength of
concrete armor units where a resistance parameter R(?) decreases with time z. R(?) is assumed to
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be a deterministic function. The load S(?) (the tensile stress caused by wave action) is assumed to
be a stationary process. The probability of failure, P(S > R), within a period T is

Tensile strength R(t), tensile stress S(t)

A
R(1)

S(T) Failure

> |

Figure VI-6-6. Illustration of a first-passage problem
P, (T)=1-exp [ [TV [R()] dt} (VI-6-32)

where v' [R (2)] is the mean-upcrossing rate (number of upcrossings per unit time) of the level
R(?) by the process S(#) at time ¢. v' can be computed by Rice's formula

VRO = [7(S-R) f[R(), $1dS

in which £ is the joint density function for S(¢) and S(¢) . Implementation of time-variant

variables into Level II analyses is rather complicated. For further explanation, see Wen and Chen
(1987).

V1-6-4. Failure Probability Analysis of Failure Mode Systems.

a. A coastal structure can be regarded as a system of components which can either
function or fail. Due to interactions between the components, failure of one component may
impose failure of another component and even lead to failure of the system. A so-called fault tree
is often used to clarify the relationships between the failure modes.

b. A fault tree describes the relationships between the failure of the system (e.g.,
excessive wave transmission over a breakwater protecting a harbor) and the events leading to
this failure. Figure VI-6-7 shows a simplified example based on some of the failure modes of a
rubble-mound breakwater.
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Excessive wave transmission
(failure of system)

‘ OR

Instability of Breakage of parapet
superstructure wall

OR
|

Sliding/tilting of Instability of .
superstructure @ main armour Rear slope erosion @

OR ‘

Displacement of main AND
armour

Erosion of toe

berm @ Sea bed scour @

Figure VI-6-7. Example of simplified fault tree for a breakwater

c. A fault tree is a simplification and a systematization of the more complete so-called
cause-consequence diagram that indicates the causes of partial failures as well as the interactions
between the failure modes. An example is shown in Figure VI-6-8.

d. The failure probability of the system (for example, the probability of excessive wave
transmission in Figure VI-6-7) depends on the failure probability of the single failure modes and
on the correlation and linking of the failure modes. The failure probability of a single failure
mode can be estimated by the methods described in Part VI-6-3. Two factors contribute to the
correlation, namely physical interaction, such as sliding of main armor caused by erosion of a
supporting toe berm, and correlation through common parameters like Hs. The correlations
caused by physical interactions are not yet quantified. Consequently, only the common-
parameter-correlation can be dealt with in a quantitative way. However, it is possible to calculate
upper and lower bounds for the failure probability of the system.

e. A system can be split into two types of fundamental systems, namely series systems
and parallel systems as illustrated by Figure VI-6-9.

(1) Series systems.

(a) In a series system, failure occurs if any of the elements i = 1, 2, ..., n fails. The upper
and lower bounds of the failure probability of the system, Pyg are

Upper bound PYs=1-(1-pP;) (1-P;,)... (1-P,,) (VI-6-33)

Lower bound  p% ¢ = max[ P, ] (VI-6-34)
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Hydraulic boundary conditions (waves, water levels, etc.)

| A U A D A

Venting Slip circle Core, subsail Slip circles Front berm Toe, seabed
slide rear settlement slide front ¢ erosion ¢ erosion
slope slope

I B 1 S AR

Rear slope Overtopping Cap wall Front slope
armour @] failure 4 armour
damage damage

I

—

il

A 4

Damage to berths, Damage to ships, Damage to in— Deterioration
bridges, cranes moorings, etfc. stallations, roads, of materials
reclaimed areas due fo wave etc. on super—
on leeward side disturbance structure

T T T

| | |

| | |

A 4 A 4 A 4

Down time

\
|
v

Cost benefit analysis

Only hydraulic loads are shown. Other types of loads are for example: SHIP COLLISION — SEISMIC ACTIVITY -
AGGRESSIVE HUMAN ACTION (SABOTAGE, WAR, Etc.)

Figure VI-6-8. Example of cause-consequence diagram for a rubble-mound breakwater

Series system 1 2 n

Parallel system

===
| S ——
n

Figure VI-6-9. Series and parallel systems
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where max [Py;] is the largest failure probability among all elements. The upper bound
corresponds to no correlation between the failure modes and the lower bound to full correlation.

Equation VI-6-33 is sometimes approximated by P/f] § = ZP/, . which is applicable only for small
i=1

P,, because Py should not be larger than 1.

(b) The OR-gates in a fault tree correspond to series components. Series components are
dominant in breakwater fault trees. In fact, the AND-gate shown in Figure VI-6-7 is included for
illustration purposes, and in reality it should be an OR-gate.

(2) Parallel systems.
(a) A parallel system fails only if all the elements fail.
Upper bound P g=min[ p,, ] (VI-6-35)

Lower bound P s=p;®P;,...P;, (VI-6-36)

(b) The upper bound corresponds to full correlation between the failure modes, and the
lower bound corresponds to no correlation.

e The AND-gates in a fault tree represent parallel components. To calculate upper and
lower failure probability bounds for a system, it is convenient to decompose the overall system
into series and parallel systems. Figure VI-6-10 shows a decomposition of the fault tree (Figure
VI-6-7).

Erosion of toe
berm

_ | Breakage of | | Sliding/tilting of ] | Rear slope || Displacement of
parapet wall @ superstructure @ erosion @ main armour

Sea bed scour @

Figure VI-6-10. Decomposition of the fault tree into series and parallel systems

e To obtain correct Prs-values it is very important that the fault tree represents precisely
the real physics of the failure development. This is illustrated by Example VI-6-2 where a fault
tree alternative to Figure VI-6-7 is analyzed. In Example VI-6-2 the same failure mode
probabilities as given in Example VI-6-1 are used.

e The real failure probability of the system Prg will always be in between PfSU and PfSL

because some correlation exists between the failure modes due to the common loading
represented by the sea state parameters, e.g., H;,
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EXAMPLE PROBLEM VI-6-1

The Level II analysis of the single failure modes for a specific breakwater schematized in Figure VI-6-10
revealed the following probabilities of failure in a 1-year period

i 1 2 3 4 5 6
P:% | 3 6 4 3 05 1

Note that these Py-values cannot be used in general because they relate to a specific structure. However,
they are typical for conventionally designed breakwaters with respect to order of magnitude and large
variations.

The simple failure probability bounds for the system are given by Equations VI-6-33, VI-6-34, VI-6-35,
and VI-6-36:

Upper bound (no correlation):
Pis=1-(1-Pre) 1-Pr)) (1= Pss) (1= Pyo) (- min [Pys5, Pya])=129%
or alternately for small values of Py;
Pis=PretPsi+PsstPyotmin [Prs, Pry])=13.5%
Lower bound (full correlation):
Pis=max [Py, Pr1,Psss Pras(Prs® Pra)l=6%

The simple bounds corresponding to 7T-years structural life might be approximated by the use of
Equation VI-6-31'

Structure life in years
20 50 100
P % 94 100 100
Pt %' 71 95 100

' It is very important to notice that the use of Equation VI-6-31, which assumes independent failure
events from one year to another, can be misleading. This will be the case if some of the parameters which
contribute significantly to the failure probability are time-invariant, i.e., are not changed from year to
year. An example would be the parameter signifying a large uncertainty of a failure mode formula, such
as the parameter 4 in Equation VI-6-2. If all parameters were time-invariant then the correct lower bound
would be

max
i=l-n

Pﬁ's N [Pi]

independent of 7, i.e., 6% for all 7" in the example. It follows that use of Equation VI-6-31 results in
values of Pys" for T> 1 year that are too large.
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EXAMPLE PROBLEM VI-6-2
Figure VI-6-11 shows a fault tree that differs from the fault tree in Figure VI-6-7. In Figure VI-6-11 only
failure mode 6 can directly cause system failure, whereas in Figure VI-6-7 each of the failure modes 6, 5,

1, 2 and (3+4) can cause system failure.

The decomposition of the fault tree is shown in two steps in Figure VI-6-12. Note that the same failure
mode can appear more than once in the decomposed system.

The simple bounds for the system are given by Equations VI-6-33, VI-6-34, VI-6-35, and VI-6-36:

Upper bound:
Ps=1-(1- Py (1-min [Py, Pss]) [Py1 Pras Py Pral =4.5%
or for smaller values of Py;
Pis=Pset+min [P, Prsl+min [Py, Pra Prs Pra]=4.5%
Lower bound:
Pis=max [P;s,(Ps1°Pss),(Pr1® Pra2® Pr3® Pra)l=1%

Using the same Py;-values and procedure as given in Example VI-6-1 the following system failure
probabilities are obtained

Structure life in years
20 50 100
Ps" % 60 90 99
P %' 18 39 63

These values are quite different from the values of Example VI-6-1 which emphasizes the importance of a
correct fault tree.

' See note in Example VI-6-1.

e It would be possible to estimate Prg if the physical interactions between the various
failure modes were known and described by formulae, and if the correlations between the
involved parameters were known. However, the procedure for determining such correlations are
complicated and are not yet fully developed for practical use.

e The probability of failure cannot in itself be used as the basis for an optimization of a

design. Optimization must be related to a kind of measure (scale), which for most structures is
the economy, but can include other measures such as loss of human life.
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Excessive wave transmission

OR

Sliding/tilting of Breakage of parapet
superstructure @ wall

OR
Displacement of main R | .
armour ear slope erosion @
AND
Erosion of toe Sea bed scour
berm @

Figure VI-6-11. Example of simplified fault tree for a breakwater

Sliding /tilting of
superstructure

Breakage of parapet
wall

Displacement of main
armour

Rear slope .
1 erosion @ Erosion of foe berm @

— Sea bed scour @ —

Sliding/tilting of |
superstructure @
Sliding/tilting of Displacement of main
superstructure (1) 1 armour
Breakage of parapet
wall
Rear slope — Erosion of toe berm —1
erosion @ @
— Sea bed scour @ —

Figure VI-6-12. Decomposition of the fault tree into series and parallel systems

e The so-called risk, defined as the product of the probability of failure and the
economic consequences, is used in optimization considerations. The economic consequences
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must cover all kinds of expenses related to the failure in question, i.e., cost of replacement,
downtime costs, etc.

VI-6-5. Parameter Uncertainties in Determining the Reliability of Structures. Calculation of
reliability or failure probability of a structure is based on formulae describing the structure’s
response to loads and on information about the uncertainties related to the formulae and relevant
parameters. Basically, uncertainty is best given by a probability distribution; but because the true
distribution is rarely known, it is common to assume a normal distribution and a related
coefficient of variation, defined as

G _ standard deviation (VI-6-37)
u mean value

!

o =

as the measure of the uncertainty. The term “uncertainty” is used in this chapter as a general term
referring to errors, to randomness, and to lack of knowledge.

a. Uncertainty related to failure mode formulae. The uncertainty associated with a
formula can be considerable. This is clearly seen from many diagrams presenting the formula as
a smooth curve shrouded by a wide scattered cloud of data points (usually from experiments)
that are the basis for the curve fitting. Coefficients of variation of 15 - 20 percent or even larger
are quite normal. The range of validity and the related coefficient of variation should always be
considered when using a design formula.

b. Uncertainty related to environmental parameters. The sources of uncertainty
contributing to the total uncertainties in environmental design values are categorized as follows:

(1) Errors related to instrument response (e.g., from accelerometer buoy and visual
observations).

(2) Variability and errors due to different and imperfect calculations methods (e.g., wave
hindcast models, algorithms for time-series analysis).

(3) Statistical sampling uncertainties due to short-term randomness of the variables
(variability within a stochastic process, e.g., two 20-min. records from a stationary storm will
give two different values of the significant wave height)

(4) Choice of theoretical distribution as a representative of the unknown long-term
distribution (e.g., a Weibull and a Gumbel distribution might fit a data set equally well but can
provide quite different values for a 200-year event).

(5) Statistical uncertainties related to extrapolation from short samples of data sets to
events of low probability of occurrence.

(6) Statistical vagaries of the elements.

(a) Distinction must be made between short-term sea state statistics and long-term
(extreme) sea statistics. Short-term statistics are related to the stationary conditions during a sea
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state, e.g., wave height distribution within a storm of constant significant wave height, H;.
Long-term statistics deal with the extreme events, e.g., the distribution of H; over many storms.

(b) Related to the short-term sea state statistics the following aspects must be considered:

e The distribution for individual wave heights in a record in deepwater and shallow-
water conditions, i.e., Rayleigh distribution and some truncated distributions, respectively.

e Variability due to short samples of single peak spectra waves in deep and shallow
water based on theory and physical simulations.

e Variability due to different spectral analysis techniques, i.e., different algorithms,
smoothing and filter limits.

e Errors in instrument response and influence of measurement location. For example,
floating accelerometer buoys tend to underestimate the height of steep waves. Characteristics of
shallow-water waves can vary considerably in areas with complex seabed topography. Wave
recordings at positions with depth-limited breaking waves cannot produce reliable estimates of
the deepwater waves.

e Imperfection of deep and shallow-water numerical hindcast models and quality of
wind input data.

(c) Estimates of overall uncertainties for short-term sea state parameters (first three
items) are presented in Table VI-6-1 for use when more precise site specific information is not
available.

(d) Evaluation of the uncertainties related to the long-term sea state statistics, and use of
these estimates for design, involves the following considerations:

e The encounter probability.

e Estimation of the standard deviation of a return-period event for a given extreme
distribution.

e Estimation of extreme distributions by fitting to data sets consisting of uncorrelated
values of H, from

- Frequent measurements of H, equally spaced in time.
— Identification of the largest H, in each year (annual series).

- Maximum values of H; for a number of storms exceeding a certain threshold value of
H;using peak over threshold (POT) analysis.

The methods of fitting are the maximum likelihood method, the method of moments, the least
square method, and visual graphical fit.

VI-6-23



EM 1110-2-1100 (Part VI)
Change 3 (28 Sep 11)

e Uncertainty on extreme distribution parameters due to limited data sample size.

e Influence on the extreme value of H, on the choice of threshold value in the POT
analysis. (The threshold level should exclude all waves which do not belong to the statistical
population of interest).

e Errors due to lack of knowledge about the true extreme distribution. Different
theoretical distributions might fit a data set equally well, but might provide quite different return
period values of H,. (The error can be estimated only empirically by comparing results from fits
to different theoretical distributions).

Table VI-6-1
Typical Variational Coefficients o/N = o /u (standard deviation over mean value) for Measured
and Calculated Sea State Parameters (Burcharth 1992)

Estimated Typical
Methods of Values
Parameter Determination 2N Bias Comments
Significant wave height, Accelerometer buoy, 0.05-0.1 -0
OFFSHORE pressure cell, vertical
radar
Horizontal radar 0.15 -0
Hindcast numerical 0.1-0.2 0- Very dependent
models 0.1 on quality of
weather maps
Hindcast, SMB method 0.15-0.2 Valid only for
? storm conditions
in restricted sea
basins
Significant wave height Visual observations 0.2
NEARSHORE determined from ships 0.05
from offshore significant
wave height accounting for ~~ Numerical models 0.1-0.20 oN can be much
shallow-water effects 0.1 larger in some
Manual calculations 0.15-0.35 cases

Mean wave period offshore ~ Accelerometer buoy 0.02-0.05 -0
on condition of fixed
significant wave height Estimates from ampl. 0.15 -0
Spectra
0.1-02 _o
Hindcast, numerical
models
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Duration of sea state with Direct measurements 0.02 -0

significant wave height

exceeding a specific level Hindcast numerical 0.05-0.1 —0
models

Spectral peak frequency Measurements 0.05-0.15 -0

offshore
Hindcast numerical 0.1-0.2 -0
models

Spectral peakedness offshore Measurements and 0.4 -0
hindcast numerical
models

Mean direction of wave Pitch-roll buoy 5 degrees

propagation offshore

Measurements #, u, v or 10 degrees
1

pou v
Hindcast numerical 15-30
models degrees

Astronomical tides Prediction from 0.001 - -0
constants 0.07

Storm surge Numerical models 0.1-0.25 V0.1

1 . . .
Two horizontal velocity components and water-level elevation or pressure.

e Errors due to applied plotting formulae in the case of graphical fitting. Depending on
the applied plotting formulae quite different extreme estimates can be obtained. The error can
only be empirically estimated.

e Climatological changes.

e Physical limitations in extrapolation to events of low probability. The most important
example might be limitations in wave heights due to limited water depths and fetch restrictions.

e The effect of measurement error on the uncertainty related to an extreme event.

(e) It is beyond the scope of this chapter to discuss in more detail the mentioned
uncertainty aspects related to the environmental parameters. Additional information is given in
Burcharth (1992).

c. Uncertainty related to structural parameters. The uncertainties related to material
parameters (such as density) and geometrical parameters (such as slope angle and size of
structural elements) are generally much smaller than the uncertainties related to the
environmental parameters and to the design formulae.
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VI-6-6. Partial Safety Factor System for Implementing Reliability in Design.

a. Introduction to partial safety factors.

(1) The objective of using partial safety factors in design is to assure a certain reliability
of the structures. This section presents the partial safety factors developed by the Permanent
International Association of Navigation Congresses (PIANC) PTCII Working Group 12
(Analysis of Rubble-Mound Breakwaters) and Working Group 28 (Breakwaters with Vertical
and Inclined Concrete Walls), Burcharth (1991) and Burcharth and Serensen (1999).

(2) The partial safety factors, y;, are related to characteristic values of the stochastic
variables, X; ., . In conventional civil engineering codes the characteristic values of loads and
other action parameters are often chosen to be an upper fractile (e.g., 5 percent), while the
characteristic values of material strength parameters are chosen to be a lower fractile. The values
of the partial safety factors are uniquely related to the applied definition of the characteristic
values.

(3) The partial safety factors, y;, are usually larger than or equal to 1. Consequently, if we
define the variables as either load variables X;°“ (for example Hy) or resistance variables X;“
(for example the block volume) then the related partial safety factors should be applied as
follows to obtain the design values:

design __ |, load load
i Vi

® Xi,ch
X, (VI-6-38)

res

Vi

design __
Xi =

(4) The magnitude of y; reflects both the uncertainty of the related parameter X; and the
relative importance of X;in the failure function. A large value, e.g., yy, = 1.4, indicates a
relatively large sensitivity of the failure probability to the significant wave height, H; On the
other hand, y [1 1 indicates little or negligible sensitivity, in which case the partial coefficient
should be omitted. Bear in mind that the magnitude of y; is not (in a mathematical sense) a
stringent measure of the sensitivity of the failure probability of the parameter, .X;

(5) As an example, when partial safety factors are applied to the characteristic values of
the parameters in Equation VI-6-2, a design equation is obtained, i.e., the definition of how to
apply the coefficients. The partial safety factors can be related either to each parameter or to
combinations of the parameters (overall coefficients). The design equation obtained when partial
safety factors are applied to each parameter is given by

Ci Ci Dn Ci COt ch

G = Aen Ach Dine ( K 2ot G
YA YA YD,, YCOI a

or (VI-6-39)

1/3 Hn
Dn,chZYA ,YA yD YCota YH ’
" " Aen A K p €Ot 0Ly

1/3
J "YHSHS,chZO
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(6) If the partial safety factors are applied to combinations of parameters, there may be
only yys and an overall coefficient y; related to the first term on the right-hand side of Equation
VI1-6-39. The design equation would then become

A

G = ¢k Acth,ch (KD COta)% - Q/HA'HS’Ch > 0
Yz
. (VI-6-40)
Dn,Ch > yZ}/H s,ch
CA,A, (K, cota, )

(7) Equations VI-6-39 and VI-6-40 express two different "code formats." By comparing
the two equations it is seen that the product of the partial coefficients is independent of the
chosen format if the other parameters are equal. A goal is to have a system which is as simple as
possible, i.e., with as few partial safety factors as possible, but without invalidating the accuracy
of the design equation beyond acceptable limits. Fortunately, it is often possible to use overall
coefficients, such as y, in Equation VI-6-40, without losing significant accuracy within the
realistic range of parameter value combinations. This is the case for the partial safety factors
system presented in this chapter where only two partial safety factors, yysand yz, are used in
each design formula.

(8) Usually several failure modes are relevant to a particular design. The relationship
between the failure modes are characterized either as series systems or parallel systems. A fault
tree can be used to illustrate the complete system. The partial safety factors for failure modes
associated with a system having a failure probability, Py, are different from the partial safety
factors for single failure modes having the same failure probability, Pr. Therefore, partial safety
factors for single failure modes and multifailure mode systems must be treated separately.

b. Uncertainties and statistical models. Uncertainties in relation to rubble-mound
breakwaters can be divided in uncertainties related to the following three groups:

(1) Load uncertainties (wave modeling).
(2) Soil strength uncertainties (modeling of soil strength parameters).

(3) Model uncertainties (both wave load models and models for bearing capacity of the
foundation).

(a) Wave modeling.
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e For calibration of partial safety factors the maximum significant wave height in 7
years is denoted as F ;- , and it is modeled (for example) by the extreme Weibull distribution,
given as

Fu;(Hy) = {l-exp{ (%} ” (VI-6-41)

where 4 is the number of observations per year, Hg/Nis the threshold level, and a and S are the
Weibull distribution parameters.

e For calibration of the PIANC partial safety factor system, wave data from four quite
different geographical locations were selected as presented in Table VI-6-2. In Table VI-6-2, N
is the number of data samples and /4 is the water depth in meters.

Table VI-6-2
Wave Data from Different Locations Fitted to a Weibull Distribution
(B, HsN and h are in meters)

N A o S (m) HgN (m) h (m)
Bilbao 50 4.17 1.39 1.06 4.9 25
Sines 15 1.25 1.78 2.53 7.1 25
Tripoli 15 0.75 1.83 3.24 2.9 25
Fallonica 46 5.94 1.14 0.58 2.7 10

e The wave data from Bilbao, Sines and Tripoli correspond to deepwater waves,
whereas the wave data from Fallonica corresponds to shallow-water waves. To model the
statistical uncertainty, o and B are modeled as independent and normally distributed.

e The model uncertainty related to the quality of the measured wave data is modeled by
a multiplicative stochastic variable Fy; which is assumed to be normally distributed with
expected value 1 and standard deviation ¢, . High quality and low quality wave data could be

represented by ¢, = 0.05 and 0.2, corresponding to accelerometer buoy and fetch diagram
estimates, respectively, as given by Table VI-6-1.

(b) Soil strength modeling.

e Statistical modeling of the soil strength (sand and/or clay) is generally difficult, and
only few models are available in the literature that can be used for practical reliability
calculations. In general the material characteristics of the soil have to be modeled as a stochastic
field. The parameters describing the stochastic field have to be determined on the basis of the
measurements which are usually performed to characterize the soil characteristics. Because these
measurements are only performed in a few locations, statistical uncertainty due to the sparse data
is introduced, and this uncertainty must be included in the statistical model. Furthermore, the
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uncertainty in the determination of the soil properties and the measurement uncertainty must also
be included in the statistical model.

e Because breakwaters are composed of loose material in frictional contact, and it is
assumed that the foundation failure modes are developed in the core; only statistical models for
the effective friction angle and the angle of dilation are needed. Usually these angles are
modeled by normal or lognormal distributions.

e The bearing capacities related to the geotechnical failure modes are estimated using
the upper bound theorem of classical plasticity theory where an associated flow rule is assumed.
However, the friction angle and the dilation angle for the rubble-mound material and the sand
subsoil are usually different. Therefore, in order to use the theory based on an associated flow
rule, the following reduced effective friction angle v; is used (Hansen 1979):

g, = SOV (V1642
I-sing siny

where vV is the effective friction angle and y is the dilation angle.

(c) Model uncertainties.

e In general, model uncertainties related to a given mathematical model can be
evaluated on the basis of:

— Comparisons between experimental tests/measurements and numerical model
calculations.

— Comparisons between numerical calculations with the given mathematical model and
a more advanced/complex model.

— Expert opinions.
— Information from the literature.

e Many laboratory experiments have been performed for most of the failure modes
related to hydraulic instability of the armor layer. Based on these experiments the model
uncertainty can be estimated. Model uncertainty connected with extrapolation from laboratory to
a real structure can be judged on the basis of expert opinions, information from the literature, and
observations of similar existing structures.

e For soil strength models no similar measurements models are available. However, if
“simple” rotation and translation failure models based on the upper bound theorem of plasticity
theory are used, then these can be evaluated by comparison with results from more refined
numerical calculations using nonlinear finite element programs. Estimates of the model
uncertainties can thus be obtained.
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c. Format for partial safety factors.

(1) The PIANC partial safety factors are calibrated with the following input:
(a) Design lifetime 77, (= 20, 50 or 100 years).

(b) Acceptable probability of failure Pr(= 0.01, 0.05, 0.10, 0.20, or 0.40).

(c) Coefficient of variation ¢, = (0.05 and 0.20).

(d) Deep or shallow-water conditions.
() Wave loads determined with or without hydraulic model tests.
(2) The partial safety factors are as follows:

(a) A load partial safety factor yp to be applied to the mean value of the permanent load

(b) A load partial safety factor yx to be applied to g * (the central estimate of the
significant wave height which, in average, is exceeded once every 7}, years).

(c) A partial safety factor to be used to the combination of the mean values of the
resistance variables as shown in the design equation. yz is to be used with friction materials in
rubble-mound and/or subsoils (tangent to the mean value of the friction angle is divided by y,).

(d) A partial safety factor yc to be used with the mean value of the undrained shear
strength of clay materials in the subsoil (the mean value of the undrained shear strength is
divided by yc¢).

d. Tables of partial safety factors.
(1) Partial safety factors are presented in Table VI-6-3.

(2) In the case of vertical walls, wave forces are calculated from the Goda formula.
Furthermore, the following factors are used to compensate for the positive bias inherent in the
Goda formula (see Table VI-5-55):

U 1o roree. = 0.90, bias factor to be applied to the Goda horizontal wave force

Uver roree. = 0.77, bias factor to be applied to the Goda vertical wave force

U tior siomen:. = 0-81, bias factor to be applied to the moment from the Goda horizontal wave

forces around the shoreward heel of the base plate
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= (.72, bias factor to be applied to the moment from the Goda vertical wave forces

Table VI-6-3
Partial Safety Factor Tables
Structure Failure Armor Table(s)
Rubble-mound Armor stability Rocks VI-6-4 - VI-6-6
structures Cubes VI-6-7
Tetrapods VI-6-8
Dolosse VI-6-9 & VI-6-10
Hollowed Cubes VI-6-11 & VI-6-12
Toe berm VI-6-13
Breakage Dolosse VI-6-14 & VI-6-15
Tetrapods VI-6-16
Runup Rock VI-6-17
Hollowed Cubes VI-6-18
Dolosse VI-6-19
Scour VI-6-20 & VI-6-21
Vertical-wall caisson Foundation: sand subsoil VI-6-22
structures Foundation: clay subsoil VI-6-23
Sliding failure VI-6-24
Overturning failure VI-6-25
Scour VI-6-26
Toe berm VI1-6-27

(3) Part VI-7, “Example Problems,” contains worked design examples for the most
common coastal structures. Some of these examples include a reliability analysis based on the
information contained in Tables VI-6-4 to VI-6-27 either as part of the design or as an alternative
to deterministic methods based on a single return period of occurrence. The Part VI-7 examples
provide coastal engineers with guidance on selection of partial safety factors yy, and y, for
various levels of Prand o, .
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Table VI-6-4
Partial Safety Factors for Stability Failure of Rock Armor, Hudson Formula, Design Without
Model Tests
Design equation (cf. Table VI-5-22)
1 5 . N
G = 7—ADn(KD cot a)'\® — ypHY (VI—6—143)
7z
ope = 005 [ oy =02
Pr | yu Vz YH Vz
0.01 | 1.7 1.04 20| 1.00
0.05 | 14 1.06 1.6 | 1.02
0.10 | 1.3 1.04 1.4 | 1.06
0.20 | 1.2 1.02 1.3 | 1.00
0.40 | 1.0 1.08 1.1 | 1.00
Table VI-6-5

Partial Safety Factors for Stability Failure of Rock Armor, Plunging Waves, van der Meer
Formula, Design Without Model Tests

Design equation (cf. Table VI-5-23)

]_ L I o = -4 2 - Eely o)
G = 7—762 SU.Z P{).IS AD”f (l‘.i(,if— (1{)0") (gum)o,g..; Nz—(],l —YH H(r: (VI—6—44)

where the factor f models the effect of low crested breakwaters:

: 1
f= PRE
1.25 — 48451/ 52

r:rj.,”q =0.05 | oy, =0.2
Py | yu vz YH | Yz
0.01 | 1.6 1.04 1.9 1.00
0.05 |14 1.02 1.5 1.06
0.10 | 1.3 1.00 1.3 1.10
0.20 | 1.2 1.00 1.2 1.06
0.40 | 1.0 1.08 1.0 1.10

VI-6-32



EM 1110-2-1100 (Part VI)
Change 3 (28 Sep 11)

Table VI-6-6
Partial Safety Factors for Stability Failure of Rock Armor, Surging Waves, van der Meer
Formula, Design Without Model Tests

Design equation (cf. Table VI-5-23)

G = =52 P03 AP, f (cot )05 P)(8m) 03P N7OU — yy HIE (VI-6—45)
Yz
where
s 1
f=— -
125 — 4.805 /52

U’F”g =0.05 U’F”g =0.2
Pf VH Tz YH Yz
0.01 | 1.7 1.00 1.9 | 1.02
0.05 | 1.3 1.10 1.6 | 1.00
0.10 | 1.3 1.02 1.4 1.04
0.20 | 1.1 1.10 1.2 | 1.08
0.40 | 1.0 1.08 1.1 ] 1.00

Table VI-6-7
Partial Safety Factors for Stability Failure of Cube Block Armor, van der Meer Formula,
Design Without Model Tests

Design equation (cf. Table VI-5-29)

1 (Nod)&4 A \—0.1A f 5T
G=—1[6.7-—= +1.0| (Som) TAD, —ygH VI-6-46
— ( e 1) Gom) T ( )

0ppe =005 | opp, =02
Pr lya | vz |ya| 7z
0.01 | 1.5 1.10 1.8 | 1.04
0.056 | 1.3 1.08 1.5 | 1.04
0.10 | 1.3 1.00 1.4 1.02
0.20 | 1.2 1.00 1.2 | 1.06
0.40 | 1.0 1.08 1.0 | 1.10

VI-6-33



EM 1110-2-1100 (Part VI)
Change 3 (28 Sep 11)

Table VI-6-8
Partial Safety Factors for Stability Failure of Tetrapods, van der Meer Formula, Design
Without Model Tests
Design equation (cf. Table VI-5-30)
1 (]\A/Yod)o'5 4 =02 A - T
G=—|37 ————+085] (5 “AD, —ygH VI-6-47
o ( (N,)025 (8om) n — YHHg ( )
Thre = 0.05 | oy, = 0.2
Py | vu vz Yu | vz
0.01 | 1.7 1.02 1.9 1.04
0.056 |14 1.06 1.5 | 1.08
0.10 | 1.3 1.04 1.4 1.04
0.20 | 1.2 1.02 1.3 | 1.00
0.40 | 1.0 1.08 1.1 | 1.00
Table VI-6-9

Partial Safety Factors for Stability Failure of Dolosse, Without Superstructure, Burcharth
Formula, Design Without Model Tests

Design equation (cf. Table VI-5-31)

1 . - N ~ N
G = TADn(47 —727) ¢ D3 N0V — A AT (VI—6—48)
Z

Opre = 0.05 | oy, =02
Pr | vu Yz Y | vz
001 [21] 1.08 [24] 1.02
005 |1.7| 1.00 |1.7| 1.08
0.10 [ 1.5 | 1.00 |1.6| 1.00
020 | 13| 1.00 |1.3]| 1.04
040 [ 1.0 | 1.10 |1.1| 1.02
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Table VI-6-10

Partial Safety Factors for Stability Failure of Dolosse, With Superstructure, Burcharth and Liu

(1995a), Design Without Model Tests

Design equation

1 ~ - . N N
G = —AD, (43 — 667) ¢ D3 N7 — vy HY (VI—6—49)
Yz

0. = 005 [ oy, =02

Pr | yu Yz Y | vz

0.01 | 1.9 1.10 2.2 | 1.04

0.05 | 1.6 1.02 1.7 | 1.04

0.10 | 1.4 1.04 1.5 1.04

0.20 | 1.2 1.06 1.3 1.04

0.40 | 1.0 1.10 1.1 | 1.02

HT Significant wave height with return period T'

Ps Mass density of concrete

Pw Mass density of water

A (ps/ pw) — 1

D, Equivalent cube length, i.e., length of cube with the same volume
as Dolosse

7 Dolos waist ratio

% Packing density

D Relative number of units within levels SWL + 6.5 Dn dis-
placed one Dolos height A, or more (e.g., for 2% displacement
insert D = 0.02)

N, Number of waves. For NV, > 3000 use N, = 3000
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Table VI-6-11
Partial Safety Factors for Stability Failure of Trunk of Hollowed Cubes, Slope 1:1.5 and 1:2,
Berenguer and Baonza (1995), Design Without Model Tests

Design equation
1 - N N oA N
G=—( " (33+0.7N3"YAD, — vy HY (VI—6—50)
Yz
where

ép = (cot 04)_1 (§0p)_0'5

0ppe =005 | opp, =02
Py | vu vz YH vz
001]35| L10 |3.5| 1.10
0.05]23| 108 |25 | 1.02
01018 | 1.06 |19 1.04
020]14| 106 |1.5| 1.02
040 | 11| 104 |11 | 1.04

HY Significant wave height with return period T'

Ps Mass density of concrete

Pw Mass density of water

A (ps/pw) — 1

D, Equivalent cube length, i.e., length of cube with the same volume
as Dolosse

Ny Number of displaced units within a strip width of one equivalent

cube length D,
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Table VI-6-12

Partial Safety Factors for Stability Failure of Roundhead of Hollowed Cubes, Slope 1:1.5 and

1:2, Berenguer and Baonza (1995), Design Without Model Tests

Design equation

1 R o N A N
G= 7_Z(1.8 +6.6D%% (ONAD,, — vy HY (VI—6-51)

where

ép = (cot 04)_1(3010)_0'5

Pr | vm Yz YH | vz
0.01 | 1.8 1.00 1.9 | 1.06
0.05 | 1.5 1.00 1.5 | 1.10
0.10 | 1.3 1.06 1.4 1.06
0.20 | 1.2 1.02 1.3 | 1.00
0.40 | 1.0 1.08 1.1 | 1.00
HY Significant wave height with return period T'
Ps Mass density of concrete
Pw Mass density of water
A (ps/pw) — 1
D, Equivalent cube length, i.e., length of cube with the same volume
as Dolosse
D Relative number of displaced units
Sop Wave steepness, Hs/ Ly,
Loy Deepwater wave length corresponding to peak wave period
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Table VI-6-13
Partial Safety Factors for Stability Failure of Toe Berm, Parallelepiped Concrete Blocks and
Rocks., Burcharth Formula, Design Without Model Tests

Design equation (cf. Table VI-5-47)

1 fa N 5 R A .
= —(04—2>— +1.6) (Nog)* " ADps0 — vy HE (VI-6—52)

G =
Yz ADnﬁO

U}Hg =0.05 | oy, = 0.2
Pr | yu Yz YH Yz
0.01 | 1.6 1.06 1.8 1.06
0.05 | 1.3 1.10 1.5 | 1.06
0.10 | 1.3 1.02 1.4 1.04
0.20 | 1.1 1.10 1.2 1.08
0.40 | 1.0 1.08 1.0 | 1.10

Table VI-6-14
Partial Safety Factors for Trunk Dolos Breakage, Burcharth Formula, Design Without Model

Tests
Design equation (cf. Table VI-5-40)
1 ~ ~ C; N
G=_B-C MO fr (T (VI-6-53)

hoire = 0.05 | oy, = 0.2
Pr | yu vz YH | Yz
0.01 | 1.9 1.00 2.1 1.00
0.05 | 1.5 1.04 1.6 1.10
0.10 | 1.4 1.00 1.5 1.00
0.20 | 1.2 1.10 1.3 1.00
0.40 | 1.1 1.00 1.1 1.02
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Table VI-6-15

Partial Safety Factors for Roundhead Dolos Breakage, Burcharth Formula, Design Without

Model Tests

Design equation (cf. Table VI-5-40)

1 . . 0. -
G=—B—0.025 M0 "% (y, AT)242

Yz

Oppe =005 | o)y =02
Py | vu vz TH Yz
001]18| 1.02 |20/ 1.00
005]|14| 110 |1.6| 1.00
010 13| 1.06 |1.4 | 1.08
020]12| 1.02 |13 | 1.00
040 | 11| 1.00 |1.1| 1.00

(VI-6—54)

Table VI-6-16

Partial Safety Factors for Trunk Tetrapod Breakage, Burcharth Formula, Design Without

Model Tests
Design equation (cf. Table VI-5-40)
1 - ~ —9. N
G=—B—339(10)3 M1 f. 27 (y, AT)384 (VI—6—55)
Yz
e = 005 | 0. = 0.2
Prloyw | vz |ya| vz
0.01 | 1.9 1.10 2.1 | 1.06
0.05 | 1.6 1.00 1.7 | 1.00
0.10 | 1.4 1.04 1.5 | 1.04
0.20 | 1.2 1.10 1.3 | 1.06
0.40 | 1.1 1.00 1.1 1.04
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Table VI-6-17
Partial Safety Factors for Runup, Rock Armored Slopes, De Waal and van der Meer (1992),
Design Without Model Tests

Design equation

For Cm = (Cot O:)_l(Smn)_ﬂ's < 1.5 H Ru/Hg =a Cm
G = o™ (cot &)(6om)"® — ] (V1-6-36)
VA

0.01 | 1.7 1.04 2.0 | 1.00
0.05 |14 1.06 1.6 | 1.02
0.10 | 1.3 1.04 1.4 | 1.06
0.20 | 1.2 1.02 1.3 | 1.00
0.40 | 1.0 1.08 1.1 | 1.00

For Cm = (cot @) (som) *? > 1.5 : Ry/Hg="b(Cn)"
1 . - . ~
G = 7_71211. b_l[COt e} (gorn)ﬂlo]{' - ’]"HH; (VI—6—57)

Oy =0.05 | 0y, =0.2
Pr | vu Yz YH | Yz
0.01 | 1.5 1.08 1.8 1.02
0.05 1 1.3 1.06 1.4 1.10
0.10 | 1.2 1.06 1.3 1.08
0.20 | 1.1 1.08 1.2 1.06
0.40 | 1.0 1.06 1.0 1.10

For permeable structures, P > 0.4, the upper limit of R, is given by R,/Hs; = d

« Slope angle

Som Wave steepness, Hs/Lom

Lom Deepwater wave length corresponding to mean wave period
R, Wave runup

HT Significant wave height with return period T’

P Notational permeability, cf. Figure VI-5-11

Values of a, b, ¢, and d coefficients.

exceedence probability (%) a b c d

0.1 1.12 1.34 0.55 2.58
2 096 1.17 046 1.97
Significant 0.72 0.88 041 135
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Table VI-6-18

Partial Safety Factors for Runup, Hollowed Cubes, Slopes 1:1.5 and 1:2, Berenguer and

Baonza (1995), Design Without Model Tests

Design equation

1. X .
G = W—Ru — g HE (0.78 +0.17 ) (VI—6—58)
z

where

ép = (cot 04)_1(§0p)_0'5

Deepwater wavelength corresponding to peak wave period

Pr lya | vz |ya| 7z
0.01 | 1.8 1.02 20| 1.04
00514 1.10 1.7 1.00
0.10 | 1.3 1.08 1.5 | 1.02
0.20 | 1.2 1.06 1.3 1.02
0.40 | 1.0 1.10 1.1 1.02
o Slope angle
Sop Wave steepness, Hs/ L,
Lop
R, Wave runup
HT

Significant wave height with return period T'
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Table VI-6-19
Partial Safety Factors for Runup, Dolosse, Slopes 1:1.5, Burcharth and Liu (1995b), Design
Without Model Tests

Design equation
1 . . R
G=—R, —ygHE (0.75 +0.11 ;) (VI-6—59)
Yz

where

ép = (cot 04)_1 (3010)_0'5

0ppe =005 | opp, =02
Pr lya | vz |va| 7z
0.01 | 1.5 1.10 1.8 | 1.04
0.05 | 14 1.00 1.5 | 1.04
0.10 | 1.3 1.00 1.4 1.02
0.20 | 1.2 1.00 1.2 | 1.06
0.40 | 1.0 1.08 1.0 | 1.10

o Slope angle

Sop Wave steepness, Hs/ L,

Loy Deepwater wavelength corresponding to peak wave period
R, Wave runup

HY Significant wave height with return period T'
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Table VI-6-20
Partial Safety Factors for Steady Stream Scour Depth in Sand at Conical Roundheads, Fredseoe
and Sumer (1997), Design Without Model Tests

Design equation, cf. Eqn. VI-5-262

18 1
G:—§—0.04 1- - (VI-6—-60)
7. B exp[4(KC — 0.05)]
where
_UnT,
KC = 5

In calculation of U,, (maximum wave orbital velocity at the bed with no structure) use
the wave height v H!

a};Hs =0.05 U%Hs =0.2
Py | yu Yz YH Yz
0.01 | 1.7 1.10 1.9 | 1.10
00514 1.10 1.6 | 1.08
0.10 | 1.3 1.10 1.4 | 1.10
0.20 | 1.2 1.06 1.2 | 1.10
0.40 | 1.0 1.10 1.1 | 1.02

Table VI-6-21
Partial Safety Factors for Scour Depth in Sand at Conical Roundheads in Breaking Wave
Conditions, Fredsge and Sumer (1997), Design Without Model Tests

Design equation, cf. Eqn. VI-5-264

R — 1.5
R T HT
S <7 ngHs)

(VI—6—61)
Yz

Oprg = 0.05 | ofpy, =02
Py | vu vz YH vz
001]16| 108 |1.8| 1.10
00514 | 1.02 |15 1.10
010 | 1.3 | 1.02 |1.4| 1.06
020 ] 12| 1.00 |13 | 1.00
040 | 11| 1.00 |1.1| 1.00
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Table VI-6-22
Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Sand Subsoil

Design equation

G

AT .o N N N
G(’YHHS, Pc; UHor.Force, UVer.Forcey UHor.Moment7 UVer.]Womenty

A1 1.
¢, ’y—Ztan ©dy s V—Ztan ©Ydy, B) (VI-6—62)

Deep water. Design without model
tests. 7z is used for both rubble-
mound and sand subsoil.

Deep water. Wave load determined
by model tests. 7z is used for both
rubble-mound and sand subsoil.

O’}:H =0.05 O—IFHS =0.2 U%‘H =0.05 U%H =0.2
Py | vm Yz YH Yz P; | yu Yz YH Yz
0.01 | 1.4 1.3 1.4 1.3 0.01 | 1.3 1.2 1.4 1.2
0.05 | 1.3 1.2 1.3 1.2 0.05 | 1.3 1.1 1.4 1.1
0.10 | 1.2 1.2 1.2 1.2 0.10 | 1.2 1.1 1.3 1.1
0.20 | 1.1 1.1 1.1 1.2 0.20 | 1.1 1.1 1.1 1.1
040 | 1.1 1.0 1.1 1.0 0.40 | 1.1 1.0 1.1 1.0

Shallow water.

model tests.

Design without
vz is used for both
rubble-mound and sand subsoil.

Shallow water. Wave load deter-
mined by model tests. vz is used for
both rubble-mound and sand sub-

T =005 | opga =02 soil.

Pf YH Yz YH Yz U%‘H =0.05 U%‘H =0.2

0.01 1.3 1.4 1.3 1.4 Pf YH Yz YH Yz

0.05 | 1.2 1.3 1.3 1.3 0.01 | 1.3 1.2 1.4 1.2

0.10 | 1.2 1.2 1.2 1.2 0.05 | 1.3 1.1 1.4 1.1

0.20 | 1.1 1.1 1.1 1.2 0.10 | 1.2 1.1 1.3 1.1

0.40 | 1.1 1.0 1.1 1.0 0.20 | 1.1 1.1 1.1 1.1
0.40 | 1.1 1.0 1.1 1.0

HT Significant wave height with return period T'

B Width of caisson

U Hor Force 0.90, bias factor to be applied to the Goda horizontal wave force

UVer.Force
UHor.Moment

UVer.Moment

0.77, bias factor to be applied to the Goda vertical wave force

0.81, bias factor to be applied to the moment from the Goda
horizontal wave forces around the shoreward heel of the base plate
0.72, bias factor to be applied to the moment from the Goda

vertical wave forces around the shoreward heel of the base plate
Sing’ COS v

Effective friction angle of friction material (sand or rubble stone)
Dilation angle of friction material (sand or rubble stone)

$d 1-sin ¢’ sin ¢
/!
P
(8
Pe Mass density of caisson
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Table VI-6-23

Partial Safety Factors for Foundation Failure of Vertical Wall Caissons - Clay Subsoil

Design equation

G = G(’YHFIg‘, ﬁm UHOT.FCTCC, (A]Ver.Force, UHOT.]\ioment, UVer.]Woment,
> 1 1
, — tan , —Cu, B VI-6—-63

¢ vz P, ) ( )
Deep water. Design without model tests. Deep water. Wave load determined by model
vz is used for rubble-mound and ¢ clay tests. -z is used for rubble-mound and ¢ clay
subsoil. subsoil.

opm. = 0.05 org. =02 opp. =0.05 Oppg =0.2

Pr | vyu | vz | ye | vu | vz | e Pr |yu | vz | yc | ym | 7z e
001 13|15 |16 |14 |15 1.6 001 (1.2 |15 | 1.6 | 1.3 | 1.5 1.6
00512 |14 |15 |13 |14 1.5 006 | 1.1 |13 |15 |12 |13 1.5
010 | 1.1 |13 |15 | 12| 1.3 1.5 0.10 { 1.0 | 1.3 | 1.5 | 1.1 | 1.3 14
020 1013|1410 13 1.5 0201|1012 |13 |10 1.3 1.3
040 1011|1110 11 1.2 040 | 1.0 |11 | 11|10 |11 1.1

Shallow water.

tests. yz is used for rubble-mound and ¢ model tests. 7z is used for rubble-mound
for clay subsoil.

Design without model Shallow water. Wave load determined by

and 7y¢ for clay subsoil.

0. = 0.05 Olre = 0.2 o =0.05 o = 0.2

Pr | ya | vz | yo |5 | 72 | e Pr | yu | vz | yo | yu | vz | 7c
001 |12 15|16 |13 |15 1.6 001 |12]13]|14]|13]| 13 1.4
0051114 |15 |12 |14 1.5 005 |11 12|14 ] 12|12 1.4
0.10 [ 1.1 | 1.3 | 1.3 | 1.2 | 1.3 1.3 010 | 1.1 | 1.2 | 1.3 | 1.1 | 1.2 1.3
020 | 1.0 13|13 |11 |12 1.3 020 | 1.0 | 1.1 | 1.3 | 1.1 | 1.1 1.2
040 |10 (11|11 |11 |11 1.1 040 | 1.0 | 1.0 | 1.0 | 1.1 | 1.0 1.0
HT Significant wave height with return period T

B Width of caisson

UHor.Force
UVer.Force
UHo'r.Moment

UVeT.Moment

Pd
/
'
()
Pe
Cu

0.90, bias factor to be applied to the Goda horizontal wave force

0.77, bias factor to be applied to the Goda vertical wave force

0.81, bias factor to be applied to the moment from the Goda horizontal
wave forces around the shoreward heel of the base plate

0.72, bias factor to be applied to the moment from the Goda vertical
wave forces around the shoreward heel of the base plate

___slng’ €os ¥

1-sin ¢’ sin ¢

Effective friction angle of friction material (sand or rubble stone)
Dilation angle of friction material (sand or rubble stone)

Mass density of caisson

Undrained shear strength of clay
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Table VI-6-24

Partial Safety Factors for Sliding Failure of Vertical Wall Caissons

Design equation

~ R ~ ~ ~ 1
G = G("}/HHST, Pc; UHor.Force; UVer.Force; C; 'Y_Zf7 B)

~ ~ ~ 1 ~
= (FG —Uver.Force FU)_f —Unor.Force Fru

Yz

In calculation of Fyy and Fy use wave height vy HY.

Deep water. Design without model

tests.
. =0.05 U}Hq =0.2

Py | vu vz vH Yz
0.01 | 1.4 1.7 1.5 1.7
0.05 | 1.3 1.4 1.4 1.4
0.10 | 1.3 1.2 1.4 1.3
0.20 | 1.2 1.2 1.3 1.2
0.40 | 1.1 1.0 1.1 1.1

Shallow water.
model tests.

Design without

O, =0.05 U'FHS =0.2 . ;

P; N P P P - opag =005 | opy, =02

001 | 13| 1.9 [14] 1.9 ;L on 7z A | 7

0.05 | 1.2 1.6 1.3 1.6 0.01 | 1.2 1.6 1.3 1.6

0.10 | 1.2 1.4 1.3 1.4 0.05 | 1.1 1.5 1.2 1.5

0.20 | 1.1 1.3 1.9 1.3 0.10 | 1.1 1.3 1.2 1.3

0.40 | 1.0 1.9 1.0 1.9 0.20 | 1.1 1.2 1.1 1.2
0.40 | 1.0 1.1 1.0 1.1

HT Significant wave height with return period T

B Width of caisson

UHo'r.Fo'rce
UVET.FOTCE
UHo-r.Moment

Deep water. Wave load determined

by model tests.

(VI—6—64)

U%‘Hq =0.05 U'FHg =0.2
Py | yu Yz vH vz
0.01 | 1.3 1.5 1.4 1.5
0.05 | 1.2 1.4 1.3 1.4
0.10 | 1.2 1.2 1.3 1.2
0.20 | 1.1 1.2 1.2 1.2
0.40 | 1.0 1.2 1.1 1.0

Shallow water.
mined by model tests.

Wave load deter-

wave forces around the shoreward heel of the base plate

UVe'r‘.]Woment

wave forces around the shoreward heel of the base plate

Pe Mass density of caisson

Fa Buoyancy reduced weight of caisson

Fy Horizontal wave force calculated by the Goda formula

Fu Wave induced uplift force calculated by the Goda formula
f Friction coefficient

0.90, bias factor to be applied to the Goda horizontal wave force
0.77, bias factor to be applied to the Goda vertical wave force
0.81, bias factor to be applied to the moment from the Goda horizontal

0.72, bias factor to be applied to the moment from the Goda vertical
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Table VI-6-25

Partial Safety Factors for Overturning Failure of Vertical Caissons

Design equation

G = G(’}’Hﬁg‘, ﬁc, ﬁHor.]\ioment: UVer.Moment, é; B)
= (MG - UVer.Moment MU) - UHOT.Moment MH (VI—6—65)

In calculation of My and My use wave height v HY .

Design without model tests. Wave load determined by
model tests.
7 — 7 —

5 Orng =0.05 | opp, =02 0. =005 | opg. =02
0 ({1 = i Py yH yH
0'05 2_7 ) 0.01 2.1 2.3
0'10 2'0 2_5 0.05 1.7 1.9
0'20 1'6 1'7 0.10 1.4 1.6

’ ’ ’ 0.20 1.3 1.4
0-40 12 12 0.40 1.1 1.2
HT Significant wave height with return period T
B Width of caisson
Ubor. Force 0.90, bias factor to be applied to the Goda horizontal wave force
Uver Force 0.77, bias factor to be applied to the Goda vertical wave force

UHo'r.Moment
UVe'r‘.]Woment

Pec
Mc
My
My
Fq
Fr
Fy

0.81, bias factor to be applied to the moment from the Goda horizontal
wave forces around the shoreward heel of the base plate
0.72, bias factor to be applied to the moment from the Goda vertical

wave forces around the shoreward heel of the base plate
Mass density of caisson

Moment of Fg around heel of caisson

Moment of Fg around heel of caisson

Moment of Fyy around heel of caisson

Buoyancy reduced weight of caisson

Horizontal wave force calculated by the Goda formula
Wave induced uplift force calculated by the Goda formula
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Table VI-6-26
Partial Safety Factors for Scour at Circular Vertical Wall Roundheads, Sumer and Fredsee
(1997), Design Without Model Tests

Design equation, cf. Equation VI-5-257

18

G=—=—05[1—exp(—0.175 [KC — 1])] (VI—6—66)
Yz B
where
_UnT,
KC =%

In calculation of U,, (maximum wave orbital velocity at the bed with no structure) use the wave height
T
yrH; .

Deep water. Shallow water.
ormg =0.05 | opg, =02 org, =0.05 | opgy, =02

Py | vu Yz YH Yz P; | vu vz YH Yz
0.01 | 2.0 2.4 2.0 2.4 0.01 | 2.0 24 2.0 2.4
0.05 | 2.0 2.0 2.0 2.0 0.05 | 2.0 2.0 2.0 2.0
0.10 | 2.0 1.8 2.0 1.8 0.10 | 2.0 1.8 2.0 1.8
0.20 | 2.0 1.5 2.0 1.5 0.20 | 2.0 1.5 2.0 1.5
0.40 | 2.0 1.2 2.0 1.2 0.40 | 2.0 1.2 2.0 1.2

Table VI-6-27
Partial Safety Factors for Toe Berm Rock Armor Failure in Front of Vertical Wall Caissons,
Design Without Model Tests

Design equation (cf. Table VI-5-48)

G=LAb, (5.8 ho _ 0.60) (Noa)**® —yu HE (VI—6—67)
Yz hs
Deep water. Shallow water.
org. =005 | opy. =0.2 org. =005 | opg. =0.2

Py | vm Yz YH Yz Py | vm Yz YH Yz
0.01 | 1.6 1.3 1.7 1.3 0.01 | 1.5 1.5 1.6 1.5
0.05 | 1.4 1.2 1.5 1.2 0.05 | 1.3 1.3 1.4 1.3
0.10 | 1.3 1.2 1.4 1.2 0.10 | 1.2 1.2 1.3 1.2
0.20 | 1.2 1.1 1.3 1.1 0.20 | 1.1 1.2 1.2 1.2
0.40 | 1.1 1.0 1.2 1.0 0.40 | 1.1 1.0 1.2 1.0
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VI-6-9. Symbols.

o Weibull distribution parameter

o Armor slope angle

B3 Weibull distribution parameter

Brr Hasofer and Lind reliability index

B Reliability index

Vi Partial safety factors

A Number of observations per year

u Mean value

Pe Mass density of caisson [force/length’]

Pw Mass density of water (salt water = 1,025 kg/m® or 2.0 slugs/ft’; fresh water
= 1,000 kg/m’ or 1.94 slugs/ft’) [force-time*/length*]

Ps Mass density of concrete [force/length3]

Ps Block density

o /rps Coefficient of variation

o Standard deviation

v Angle of dilation [degrees]
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Packing density

Angle of friction in granular material [degrees]

Width of caisson [length]

Undrained shear strength of clay [force/length’]

Relative number of units

Nominal block diameter [length]

Friction coefficient [dimensionless]

Wave induced uplift force [force]

Horizontal wave force [force]

Buoyancy reduced weight of caisson [force]

Failure function

Significant wave height with return period 7'

Water depth [length]

Threshold level

Significant wave height [length]

Coefficient signifying the degree of damage [dimensionless]
Deepwater wave length corresponding to mean wave period [length]
Deepwater wave length corresponding to the peak wave period [length]

Moment around the heel of caisson by buoyancy-reduced weight of the caisson
[length-force]

Moment around the heel of caisson by wave induced horizontal force [length-force]
Moment around the heel of caisson by wave induced uplift force [length-force]
Number of units displaced out of the armor layer

Number of waves

Number of data points

Notational permeability parameter (Figure VI-5-11)

Probability of failure

Maximum runup or water-surface elevation measured vertically from the still-water

level [length]

Dolos waist ratio [dimensionless]
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Ry Reliability

R Variable representing the variations in resistance between nominally identical
structures

Som Wave steepness (=Hy/Lom)

Sop Deepwater wave steepness [dimensionless]

S Represents the maximum load effects within a period of time

T Design lifetime [years]

T, Wave period [time]

Un Maximum wave orbital velocity at the bed with no structure [length/time]

w Water level [length]
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