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APPENDIX O 
Measures of Correlation 

 
O-1.  Introduction.  A correlation coefficient provides a measure of the degree of association 
between two variables or measurements. For example, the degree of association between pH and 
the concentration of a dissolved metal in groundwater may be of interest. The primary objective 
of calculating a correlation coefficient is to determine whether one variable increases or de-
creases as the second variable increases, or whether the two variables vary independently of one 
another. 
 
 O-1.1.  In environmental applications, a correlation coefficient may be used to determine 
the strength of an association. For example, numerous groundwater sites contaminated with chlo-
rinated solvents also have high dissolved iron concentrations. Is it possible to determine whether 
the high iron locations are the same as where chlorinated solvent levels are also high? A correla-
tion coefficient for the relationship provides a quantitative measure of the degree of association 
of these measured parameters. 
 
 O-1.2.  A high correlation coefficient does not prove cause and effect. When the correlation 
between two variables is high, the relationship is strong; but one cannot conclude that one vari-
able causes the other variable to increase or decrease without further evidence. Measuring and 
identifying correlation is often critical for environmental data, which are frequently correlated 
over time or space, or both. 
 
 O-1.3.  Classical statistical methods typically assume data are not correlated. If correlations 
are not identified before data are statistically evaluated, then statistical methods can provide mis-
leading results. There are also statistics that depend upon correlation in the data, such as geosta-
tistics (Appendix R), and there are methods available for “detrending” or “uncorrelating” data 
under certain circumstances. These cases are beyond the scope of this discussion, and may be 
best addressed by a statistician. 
 
 O-1.4.  Several different correlation coefficients for measuring the degree of association 
between two variables will be discussed. The correlation coefficients share common properties. 
Each is a dimensionless quantity with values ranging from –1 to 1. A positive correlation coeffi-
cient for two variables indicates that one variable tends to increase as the other variable in-
creases. A negative correlation indicates that one variable tends to decrease as the other variable 
increases. The highest possible degree of correlation occurs when the absolute value of the corre-
lation coefficient equals one. When two variables are truly independent, the behavior of one 
variable cannot be predicted from the other variable, and the correlation coefficient is zero. The 
references EPA 600/R-96/084, QA/G-9 and Conover (1980) contain additional details about 
measures of correlation. 
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O-2.  Correlation Coefficients as Hypothesis Testing. 
 
 O-2.1.  Introduction.  Calculated values of a correlation coefficient for a set of actual meas-
urements are rarely identically equal to zero when a true correlation is absent (when the true cor-
relation coefficient γ = 0). Therefore, a hypothesis test is done to determine the presence or 
absence of a significant correlation. Hypothesis tests are discussed in additional detail in Appen-
dices L, M, and N. 
 
 O-2.1.1.  The significance of the correlation is often evaluated using a hypothesis test in the 
form: 
 
 H0: γ = 0,   HA: γ ≠ 0. 
 
 O-2.1.1.1.  The correlation coefficient for a set of measured results  is initially cal-
culated. The calculated (sample) correlation coefficient,

( ii yx ,
γ̂ , is viewed as an approximation of the 

population correlation coefficient,γ , for the X and Y variables. 
 
 O-2.1.1.2.  The probability, p, of obtaining the calculated value when X and Y are not corre-
lated (when the true correlation coefficient γ = 0) is then determined. The probability is typically 
calculated by statistical software. 
 
 O-2.1.1.3.  If p is sufficiently small (e.g., p ≤ α = 0.05 or 0.01), then a correlation exists. 
More accurately, the null hypothesis that the true correlation coefficient is zero is rejected (with a 
level of confidence of at least 1 – α). 
 
 O-2.1.1.4.  When statistical software is unavailable, the largest possible absolute value of a 
correlation coefficient that can occur when X and Y are not correlated is obtained from a table. 
The tabular value for the 1 – α level of confidence is subsequently compared to the calculated 
value. If the calculated value is larger than the value obtained from the table, the null hypothesis 
is rejected, and the correlation coefficient is not equal to zero. 
 
 O-2.1.2.  Directions and an example for using a correlation coefficient statistical test are in 
Paragraphs O-2.2 and O-2.3, respectively. 
 
 O-2.1.3.  Typically, a correlation coefficient is viewed to be significantly different from 
zero if the p value is less than a specified significance level, usually taken to be between 0.1 and 
0.01. The p value is discussed in more detail in Appendices L, M, and N. Various values for the 
absolute value of the correlation coefficient, γ , qualitatively describe the degree of association 
below:  
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Absolute value of correlation coefficient Degree of relationship 

50.0<γ  Extremely Weak 

75.050.0 << γ  Weak 

90.075.0 << γ  Moderate 

95.090.0 << γ  Moderately Strong 

00.195.0 << γ  Strong 

 
 O-2.1.4.  Four different sample correlation coefficients are discussed below. 
 
 O-2.1.4.1.  Pearson’s r. 
 
 O-2.1.4.2.  Spearman’s rho (ρ). 
 
 O-2.1.4.3.  Serial correlation coefficient. 
 
 O-2.1.4.4.  Kendall’s tau (τ). 
 
 O-2.1.5.  Pearson’s r measures the degree of correlation between two variables for linear 
relationships. Kendall’s τ and Spearman’s ρ measure the degree of any monotonic relationship 
between two variables. Two variables, X and Y, are monotonically correlated if, overall, Y con-
sistently increases or decreases as X increases. Note that X and Y will not be monotonically cor-
related if, as X increases, Y increases then decreases (or decreases then increases). 
 
 O-2.2.  Directions for a Correlation Coefficient Statistical Test.  Calculate the test statistic: 
 

 

2
1 2

−
−

=

n
r

rt . 

 
 O-2.2.1.  Use Table B-23 of Appendix B to find the critical value , which is (1 – 
α/2)100th percentile of the Student’s t distribution with degrees of freedom 

να ,2/1−t
−= n 2ν .  

 
 O-2.2.1.1.  Conclude that the correlation is significantly different from zero if  
 
 να ,2/1−> tt . 
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 O-2.2.1.2.  Otherwise, state that there is insufficient evidence to conclude that the correla-
tion coefficient is different from zero. 
 
 O-2.2.2.  A one-tailed test can be performed in a similar manner by replacing α/2 by α. For 
example, to test whether a correlation exceeds zero, compare t with . If  con-
clude that the correlation is larger than zero. Otherwise conclude that the true correlation may be 
less than or equal to zero. 

2,1 −− nt α 2,1 −−> ntt α

 
 O-2.3.  Example of a Test for a Correlation Coefficient.  Consider the following data set for 
chromium and lead in subsurface soil background (in mg/kg). 
 

Sample Chromium (X) Lead (Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26  4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.3.1.  The objective is to test if the correlation coefficient is different from zero, based 
on 90% level of confidence. 
 
 O-2.3.2.  For 90% confidence, 10.0=α . 
 
 O-2.3.3.  The correlation coefficient was calculated in Paragraph O-2.4.2 and equals 

. 72.0=r
 
 O-2.3.4.  The test statistic is  
 

 563.2

28
)7229.0(1

7229.0
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=

−
−

=
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=

n
r

rt  

 
with .628 =−=ν  
 
 O-2.3.5.  The critical value is 943.16,95.02,2/1 ==−− tt nα . 
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 O-2.3.6.  Comparing the test statistic to the critical value, t = 2.563 > 1.943. With at least 
90% confidence, the correlation coefficient is significantly different from zero. However, given 
the magnitude of r, the linear association between chromium and lead could be qualitatively de-
scribed as “weak.” 
 
 O-2.4.  Pearson’s r.  The Pearson’s r is a parametric measure of correlation for linear rela-
tionship between two variables. A linear association implies that, as one variable increases, so 
does the other in a uniform manner (i.e., linearly), or as one variable decreases the other in-
creases linearly. A value of +1 implies a perfect positive linear correlation, i.e., that all the data 
pairs (xi, yi) lie on a straight line with a positive slope. A value of –1 implies perfect negative lin-
ear correlation. Directions and an example for Pearson’s correlation coefficient are presented in 
Paragraphs O-2.4.1 and O-2.4.2. 
 
 O-2.4.1.  Directions for Pearson’s Correlation Coefficient.  Let x1, x2,..., xn represent one 
variable (X) of the n data points and let y1, y2,..., yn represent the corresponding values of a sec-
ond variable (Y). The Pearson correlation coefficient, r, for the sample of (xi, yi) pairs is com-
puted by: 
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 O-2.4.2.  Example of Pearson’s Correlation Coefficient.  Consider the following data set 
for n = 8 chromium and lead in subsurface soil background (in mg/kg): 
 

Sample Chromium(X) Lead(Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.4.2.1.  For chromium,  
 

  39.43.845.865.744.535.284.265.294.60
8

1
=+++++++=∑

=i
ix
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So, 925.48/4.39 ==x and  
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 O-2.4.2.2.  For lead,  
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So, 909.38/27.31 ==y  and  
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 O-2.4.2.3.  The “cross term” dependent upon the product of chromium and lead is: 
 

155.3.3.35)84.3(4.19)86.5(4.31)74.5(3.66)53.4(

3.91)28.5(4.19)26.4(4.16)5.29(3.50)60.4(

=×+×+×+×

+×+×+×+×=∑
n

i
ii yx

 

 
So, 
 

 72.0
3729.07226.07

)909.3925.48(3.155
=

××
××−

=r . 

 
Paragraphs O-2.4.3 and O-2.4.4 will demonstrate how to test whether the sample correlation co-
efficient indicates that the population correlation coefficient differs from zero. 
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 O-2.4.3.  Discussion.  Although two independent variables will produce a correlation coef-
ficient of zero, it should be noted that a calculated correlation coefficient that is equal to or near 
zero does not demonstrate the absence of a significant relationship between the two variables. 
For example, because Pearsons’ r does not detect non-linear relationships, a strong non-linear re-
lationship could result in a value of r equal to zero. 
 
 O-2.4.3.1.  The data from the previous example are illustrated in Figure O-1. Correlation 
coefficients should be used with scatter plots to determine whether a low value of Pearson’s r is 
due to a non-linear relationship or a lack of association. 
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Figure O-1.  Scatter plot for chromium and lead. 

 
 O-2.4.3.2.  Pearson’s r can be sensitive to the presence of one or two extreme values, espe-
cially when sample sizes are small. Such values may result in a high correlation, suggesting a 
strong linear trend, when only a moderate or weak trend is present. This may happen, for in-
stance, if a single (x, y) pair has very high values for both measurements while the remaining 
data values are uncorrelated. For example, Figure O-2 plots an example where a very large out-
lier exists. Including the outlier leads to a sample correlation coefficient of 0.96. Without this 
value, the sample correlation coefficient falls to –0.10. Extreme values may also lead to low 
sample correlation coefficients, thus tending to mask a strong linear trend. This may happen if all 
the (x, y) pairs except one (or two) tend to cluster tightly about a straight line, and the exceptional 
point has a very large X value paired with a moderate or small Y value (or vice versa). Because of 
the influences of extreme values, it is wise to use a scatter plot in conjunction with a Pearson cor-
relation coefficient. 
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Figure O-2.  Scatter plot with outlier. 

 
 O-2.4.3.3.  An important property of Pearson’s r is that it is unaffected by changes in loca-
tion of the data (adding or subtracting a constant from all of the X or Y measurements) and by 
changes in scale of the data (multiplying the X or Y values by a positive constant). Linear trans-
formations on the data pairs do not affect the correlation coefficient of the measurements. For 
example, if one variable in the pair was temperature in degrees Celsius, then the correlation 
would not change if Celsius is converted to Fahrenheit. 
 
 O-2.4.3.4.  However, Pearson’s r is not invariant to non-linear transformations. If non-
linear transformations of the measurements are made, then the Pearson correlation coefficient be-
tween the transformed values will differ from the Pearson correlation coefficient of the original 
measurements. For example, if X and Y represent PCB and dioxin concentrations in soil, respec-
tively, and  and ( )LogU X= ( )LogV = Y , then the Pearson correlation coefficients between X 
and Y and between U and V will be different because the logarithmic transformation is a nonlin-
ear transformation. 
 
 O-2.4.3.5.  It should be further noted that statistical tests that use r to estimate the popula-
tion correlation coefficient rely on the assumption that the true relationship between the variables 
X and Y follows a bivariate normal distribution. If either variable X or Y is not normal, then to-
gether X and Y are not likely to follow a bivariate normal distribution. For more details see 
Snedecor and Cochran (1982). 
 
 O-2.5.  Spearman’s rho.  Spearman’s rank correlation coefficient measures monotonic cor-
relation for ordinal data (data that can be ranked) and is nonparametric (i.e., can be used when 
the data are not normally distributed). 
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 O-2.5.1.  Introduction.  Data may be either linearly or non-linearly correlated. When one 
variable tends to consistently increase or decrease as another variable increases, the two variables 
possess a monotonic correlation. Unlike Pearson’s r, Spearman’s rho, ρ, may be used to measure 
the strength of both linear and nonlinear relationships. 
 
 O-2.5.1.1.  It is calculated by first replacing each value x, by its rank R(x) (1 for the small-
est x value, 2 for the second smallest, etc.) and each value y by its rank R(y). These pairs of ranks 
are then treated as the (x, y) data and Spearman’s rank correlation is calculated using the same 
formula as for Pearson’s correlation.  
 
 O-2.5.1.2.  Directions and an example for calculating a Spearman’s rank correlation coeffi-
cient are contained in the Paragraphs O-2.5.2 and O-2.5.3. 
 
 O-2.5.1.3.  Because meaningful (monotonically increasing) transformations of the data will 
not alter the ranks of the respective variables (the ranks for Log(x) will be the same as the ranks 
for x), Spearman’s correlation will not be altered by non-linear increasing transformations of x 
and y. For instance, the Spearman correlation between PCB and dioxin concentrations (x and y) 
in soil will be the same as the correlation between their logarithms, Log(x) and Log(y). Because 
Spearman’s ρ is a nonparametric measure of correlation, it is invariant for monotonic increasing 
transformations and is less sensitive to extreme values than Pearson’s correlation. However, 
Pearson’s r has higher statistical power than Spearman’s ρ. 
 
 O-2.5.2.  Directions for the Spearman’s Rank Correlation Coefficient.  Let  
 
   ( ) ( ) ( )nxRxRxR ,,, 21 K

 
represent a set of ranks of the n data points for the variable X and let  
 
   ( ) ( ) ( )nyRyRyR ,,, 21 K

 
represent a set of ranks of a second variable Y of the n data points. The Spearman sample correla-
tion coefficient, ρ , for X and Y is computed by: 
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 O-2.5.3.  Example of Spearman’s Correlation Coefficient.  Consider the following data set 
for chromium and lead in subsurface soil background (in mg/kg): 
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Sample Chromium(X) Lead(Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.5.3.1.  First the data must be ranked: 
 

Sample Chromium Rank (X) Lead Rank (Y) 
EPC-BG01 4.60 4 3.50 2 
EPC-BG02 5.29 6 4.16 5 
EPC-BG03 4.26 2 4.19 6.5 
EPC-BG04 5.28 5 3.91 4 
EPC-BG05 4.53 3 3.66 3 
EPC-BG06 5.74 7 4.31 8 
EPC-BG07 5.86 8 4.19 6.5 
EPC-BG08 3.84 1 3.35 1 

 
 O-2.5.3.2.  Notice that two of the lead values are equal, so their rank is assigned to be the 
average of ranks 6 and 7. 
 
 O-2.5.3.3.  For chromium, ( ) 5.4=xR , and ( ) 45.2=xRs . 
 
 O-2.5.3.4.  For lead, ( ) 5.4=yR , and ( ) 43.2=yRs . 

 
 O-2.5.3.5.  The sum of the cross-products for chromium and lead ranks is: 
 

( ) ( )
8

1
(1 1) (2 6.5) (3 3) (4 2) (5 4) (6 5) (7 8) (8 6.5)

189 .

i i
i

R x R y
=

= × + × + × + × + × + × + × + ×

=

∑  

 
 O-2.5.3.6.  The correlation coefficient is  
 

 647.0
43.245.27

)5.45.48(189
=

××
××−

=ρ  . 
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 O-2.6.  Serial Correlation Coefficient.  The serial correlation coefficient is a measure of the 
extent to which successive observations (either in time or space) are related. The primary differ-
ence between the serial correlation coefficient and other measures of correlation is the manner in 
which the correlation coefficient is used and the manner in which one of the variables is scaled. 
For example, the serial correlation coefficient is frequently used to determine the behavior of 
some variable of interest X with respect to time (t). Frequently, the variable X is measured at 
equally spaced time intervals, so that the data points are of the form (x1, t1), (x2, t2),…., (xn, tn). 
The serial correlation coefficient may be a parametric or non-parametric measure of correlation, 
depending upon how it is calculated. For example, if variable X is being evaluated with respect to 
time t, Spearman’s ρ is essentially being calculated if the values of X are replaced with the corre-
sponding ranks. Directions and examples for calculating a serial correlation coefficient are pre-
sented in the following two Paragraphs. 
 
 O-2.6.1.  Directions to Calculate the Serial Correlation Coefficient.   
 
 O-2.6.1.1.  For a sequence of data points taken serially in time, or “one-by-one in a row,” 
the serial correlation coefficient can be calculated by replacing the sequencing variable by the 
numbers 1 through n and calculating Pearson’s correlation coefficient with x being the actual 
data values, and y being the numbers 1 through n. For example, for a sequence of samples col-
lected every 10 feet along a straight transit line at a waste site, the distances on the transit line of 
the data points are replaced by the numbers 1 through n, for samples taken at 10-foot intervals 
(first 10-foot sample point = 1, the 20-foot sample point = 2, the 30-foot sample point = 3, etc.)  
 
 O-2.6.1.2.  To calculate the serial correlation coefficient, let x1, x2,..., xn  represent the data 
values collected in sequence over equally spaced periods. Label the periods 1, 2..., n to match the 
data values. Use the directions above to calculate the Pearson’s Correlation Coefficient between 
the data, x, and the time-periods, y. 
 
 O-2.6.2.  Estimating the Serial Correlation Coefficient.  Consider benzene results taken 
from quarterly groundwater samples at well MW01 in Site A from 1998–2000. Benzene has 
been detected during all of these sampling events, so no proxy concentrations were derived. 
Also, notice how the numbers 1 through 10 replace the actual sample dates. 
 

Time Jan-98 Apr-98 Jul-98 Oct-98 Apr-99 Jul-99 Oct-99 Apr-00 Jul-00 Oct-00
Time Period 
Number 

1 2 3 4 5 6 7 8 9 10 

Concentration 
(μg/L) 

12.2 3.79 3.42 5.47 0.81 1.84 7.56 4.3 2.68 6.17 

 
 O-2.6.2.1.  For the concentration (X), 
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 O-2.6.2.2.  For the time period (Y), 
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The cross term is: 
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 O-2.6.2.3.  Using Paragraph O-2.4.1, we see that the Pearson correlation coefficient, r, be-
tween the concentration (X) and the time period (Y) gives a serial correlation coefficient of: 
 

 2813.0
028.3284.39

)5.5824.410(2.240
−=

××
××−

=r . 

 
 O-2.7.  Kendall’s Coefficient of Rank Correlation.  In instances where data do not follow a 
normal or other known distribution, it is still possible to test for the significance of association 
between two variables. Kendall’s coefficient of rank correlation, also referred to as Kendall’s τ 
(the Greek letter tau), is a measure of correlation that may be used for variables that are at least 
ordinal in nature (i.e., variables with values that can be ranked). It is frequently encountered in 
ecological applications such as counting of fish species in a stream in different seasons.  
 
 O-2.7.1.  Introduction.  Kendall’s τ does not assume any particular data distribution and 
accommodates censored values. Non-detected results should be assigned a value smaller than the 
lowest measured value. As the test depends only upon signs of the differences between data 
points (or the ranks), information about magnitudes of these differences is not used; as a result, 
the test possesses less power than its parametric counterpart, Pearson’s r (i.e., a larger number of 
data points are required to identify a correlation using Kendall’s τ). However, Kendall’s τ is ad-
vantageous because assumptions about the underlying data distribution are not required, and it is 
less sensitive to outliers and censored values than a parametric test. 
 
 O-2.7.1.1.  Kendall’s τ is also invariant with respect to monotonic transformations of the 
variables. For example, the calculated value of τ will be identical to the calculated value for log-
transformed variables. See the discussion at the end of Paragraph O-2.5 for more details. It 
should also be noted that for the same data, the value for Kendall’s τ is generally lower than for 



EM 1110-1-4014 
31 Jan 08 

 

O-13 

)

Spearman’s r (Conover, 1980). However, statistical tests for γ = 0 are generally in agreement be-
tween the two. 
 
 O-2.7.1.2.  Kendall’s τ for small sample sizes is appropriate for data with fewer than 40 
samples (Gilbert, 1987); the EPA suggests using this method with data sets fewer than 10 sam-
ples. Tied observations (when two or more measurements are equal) degrade the statistical power 
and should be avoided, if possible, by recording the data to sufficient accuracy. If the number of 
samples becomes too large, the calculations become cumbersome to do by hand. Directions for 
calculating Kendall’s τ for a small sample size (less than 10 samples) are presented in Paragraph 
O-2.7.2 and an example is presented in Paragraph O-2.7.3. Extensions of Kendall’s τ for larger 
sample sizes are explained with the Mann-Kendall test for trends in Appendix P. In that Appen-
dix, the time variable corresponds to the X variable here, and the X variable in Appendix P corre-
sponds to the Y variable here. 
 
 O-2.7.2.  Directions for Kendall’s Coefficient of Rank Correlation.  Let 

 represent pairs of measurements of variables X and Y. Order the pairs 
from least to greatest by the x value 
( ) ( ) ( nn yxyxyx ,,,,,, 2211 K

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

nxnxx yxyxyx ,,,,,,
21 21 K . Here the notation  

indicates the Y measurement that corresponds to the ith X measurement ordered from least to 
greatest. The test statistic S is then calculated:  

( )ixy

 
  −+ −= SSS
 
where  is the number of positive (“concordant”) pairs: +S
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( ) ( )ji xx yy < . 

Likewise,  is the number of negative (“discordant”) pairs: −S
( ) ( )
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 .  
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It can be shown that there are a total of ( ) 21−nn  possible pairwise comparisons for a set of n 
pairs 

( ) ( )
( )

ji xx yy , . The sample statistic Kendal1’s τ, is: 
 

 ( ) 21−
=

nn
Sτ  . 

 
Note that differences of zero are not included in the test statistic (and should be avoided, if pos-
sible, by recording data to sufficient accuracy). However, an adjustment for ties may be made by 
calculating Kendall’s “tau b,” τb  
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⎟
⎠
⎞

⎜
⎝
⎛ ′−

−
⎟
⎠
⎞

⎜
⎝
⎛ ′−

−
=

YX

b

nnnnnn
S

2
)1(

2
)1(

τ  . 

 
The quantities Xn  and Y denote the number of ties for the X variable and Y variable, respec-
tively. In particular, if there are n pairs of values 

′ n′
( )ji yx , , so that the measured values of X 

are n , then X  is the number of pairs xxx ...,, 21 n′ ( )ji , where i > j, for which xx , ( ) 0=− ji xx  or for 
which this difference cannot be determined to be either positive or negative because of data cen-
soring. For example, assume that there are multiple censoring limits for non-detects (e.g., < 3 and 
< 5), and X is the set of n = 5 values {< 1, < 3, < 5, 2, 10} with the corresponding Y values {2, 4, 
5, 7, 9}, so that, for example, the first pair of results ( )11, yx  is ( )2,1< . There are five tied pairs 
for the measured values of X: (< 1, < 3), (< 1, < 5), (< 3, < 5), (< 3, 2), and (< 5, < 2). Therefore, 

. As there are no tied values for Y, 5=′Xn 0=′Yn . Note that when ττ ==′=′ b,0YX . Tied val-
ues tend produce larger values for τb relative to the corresponding values for τ. 

nn

 
 O-2.7.2.1.  Table O-1 presents the resulting matrix of differences when applying the steps 
above. Fill in the blank spaces with a 1 if the value at the top of the column exceeds the value at 
the left of the row. Fill in 0 if they are equal, and fill in –1 otherwise. Then sum the values across 
rows and add up the sums to get S. 
 
Table O-1. 
Resulting Matrix of Differences 

Y Measurements ( )2xy  
( )3xy  . . . ( )nxy  Sum of Row 

( )1xy       

( )2xy       

. . .      

( )1−nxy       
     S 

 
 O-2.7.2.2.  Use Table B-10 of Appendix B to determine the probability (p) using the sam-
ple size (n) and the absolute value of the statistic S if 10≤n .  
 
 O-2.7.2.3.  For testing H0: 0=γ  against HA: 0≠γ  at significance level α, reject H0 if 

2α<p . 
 
 O-2.7.3.  Example of Kendall’s Rank Correlation Coefficient.  Consider the same data set 
presented in Paragraphs O-2.4.2 and O-2.5.2 for chromium and lead in subsurface soil back-
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ground (in mg/kg). Although these data are for continuous variables, it is possible to determine 
the rank correlation between chromium and lead using Kendall’s τ. 
 
 O-2.7.3.1.  First the data must be ordered by the chromium measurements as shown below. 
 

Sample Chromium Lead 
EPC-BG08 3.84 3.35 
EPC-BG03 4.26 4.19 
EPC-BG05 4.53 3.66 
EPC-BG01 4.60 3.50 
EPC-BG04 5.28 3.91 
EPC-BG02 5.29 4.16 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 

 
 O-2.7.3.2.  Then, create Table O-2 for the lead measurements as described in Paragraph O-
2.7.2. 
 

O-2.7.3.3.  From Table O-2, S = 15. There are n = 8 pairs of lead and chromium meas-
urements. Therefore, Kendall’s tau is: 

 

( ) ( ) 0.536
2188

15
21

=
−

=
−

=
nn

Sτ .  

 
As there is one tie for the lead measurements (two measurements equal 4.19) 
 

=

⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

⎟
⎠
⎞

⎜
⎝
⎛ ′−

−
⎟
⎠
⎞

⎜
⎝
⎛ ′−

−
=

1
2

)18(80
2

)18(8
15

2
)1(

2
)1(

YX

b

nnnnnn
Sτ 0.546. 

 
 O-2.7.3.4.  To test whether the population correlation coefficient differs from 0 with 90% 
confidence (α = 0.05), look up the value of p corresponding to S = 15 for n = 8 in Table B-10. 
Owing to the tied value for lead, S = 15 does not appear in the table. Ideally, the data should have 
been recorded with more accuracy to break the tie. In this case, the value for S = 14 will be used 
to give p = 0.054 > α/2 = 0.05. We conclude that the population correlation coefficient does not 
differ significantly from zero with 90% confidence although further study may be needed. 
 
 O-2.8.  Covariance.  A statistic related to the correlation coefficient is covariance. Covari-
ance is a measure of the linear association between two random variables, X and Y. If covariance 
is positive, large values of X tend to be associated with large values of Y and vice versa. If co-
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variance is negative, large values of X tend to be associated with small values of Y and vice 
versa. The sample covariance is calculated as  
 

 ( )( )
)1(1

1 1

1 −

−
=−−

−
=

∑
∑ =

= n

yxnyx
yyxx

n
s

n

i
iin

i
iixy .  

 
Table O-2. 
Resulting Matrix of Differences 

Lead Measurements 4.19 3.66 3.50 3.91 4.16 4.31 4.19 Sum of Row 

( )
35.3

1
=xy  1 1 1 1 1 1 1 7 

( )
19.4

2
=xy   –1 –1 –1 –1 1 0 –3 

( )
66.3

3
=xy    –1 1 1 1 1 3 

( )
50.3

4
=xy     1 1 1 1 4 

( )
91.3

5
=xy      1 1 1 3 

( )
16.4

6
=xy       1 1 2 

( )
31.4

7
=xy  

      –1 –1 

        S = 15 

 
 O-2.8.1.  Pearson’s correlation coefficient is derived from the covariance by dividing co-
variance by the sample standard deviations of X and Y. 
 
 O-2.8.2.  Covariance is rarely used because the magnitude of its value is difficult to inter-
pret. In particular, changes in scale cause changes to the covariance; that is, covariance is not in-
variant to changes in scale. For example, if X is multiplied by 100, its covariance with Y will also 
go up by a factor of 100, while its correlation with Y will remain the same. 


	Degree of relationship
	S


