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APPENDIX E 
Assumptions of Distribution 

 
Section I 
Introduction 
 
E-1.  One of the essential decisions that precedes many statistical calculations is determining the 
statistical distribution. Whether the data can be classified as normally distributed, lognormally 
distributed, meeting some other distribution, or meeting no distributional assumption, dictates 
how subsequent calculations and statistical tests are chosen and conducted. Distributional as-
sumptions are common in statistical analyses, especially assumptions of normality. Data from 
environmental studies tend to be skewed rather than following a classical bell-shaped curve, or 
normal distribution. Thus, verifying distributional assumptions is critical to a successful statisti-
cal analysis. 
 
E-2.  To provide an objective basis for making this decision, statistical tests are available and 
discussed in this Appendix. Tests can be applied to the untransformed data when testing for nor-
mality or to the log-transformed data when testing for lognormality. Normal probability plots 
should also be constructed and examined as described in Appendix J. 
 
Section II 
Probability Distributions 
 
E-3.  Introduction.  Many statistical tests and models are appropriate only for data that follow a 
particular distribution. For a continuous variable X (e.g., the concentration of a contaminant), the 
distribution is modeled by a mathematical function of the form: P = P(X), where P(X) is referred 
to as the probability density function or probability distribution. A plot of P versus X generates a 
curve. The area (integral) under the curve between any two points, Xa and Xb, gives the probabil-
ity that the random variable X lies between the two points, P(Xa ≤ X ≤ Xb), which will be a num-
ber between 0 and 1. The total area under the entire curve is always 1. Figure E-1 plots P(X) and 
shows how P(5 < X < 6) would be found. 
 
 E-3.1.  A common use of probability density functions is to calculate population percentiles 
for the distribution. For example, if X0.95 is the value such that P(X ≤ X0.95) = 0.95, then X0.95 is 
referred to as the 95th (population) percentile or 0.95 quantile of X. In general, Xp denotes the 
p100th percentile or p quantile of X. Appendix D covers techniques to estimate the population 
percentile from sample data. 
 
 E-3.2.  Two of the most important distributions for tests involving environmental data are 
the normal and the lognormal probability distributions. When a parametric statistical test is per-
formed on some set of measured values of X ( ), some specific probability density nxxx ,,, 21 K
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function, P(X), is either known or assumed. This section will provide guidance for determining if 
the distributional assumption of a given statistical test is satisfied; in particular, the assumption 
of normality, as this assumption is fundamental to virtually all parametric statistical tests.  
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Figure E-1. Probability density function. 
 

 E-3.1.  Normal Distribution.  If the variable X possesses a normal or Gaussian distribution 
(i.e., is said to be normally distributed), then the probability density function for X is  
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 E-3.1.1.  A plot of X versus P(X) generates a bell-shaped curve. Two such curves are 
shown in Figure E-2. The function P(X) depends on two parameters (constants), the population 
mean, μ , and the population standard deviation, σ , where 0>σ . It is often useful to work 
with the square of the standard deviation, , which is referred to as the population variance. 
Note that the normal distribution is symmetrically centered about the mean,

2σ
μ , and tapers off 

rapidly at the tails. Because exactly 50% of the distribution falls below the mean, the median 
(50th percentile) of the normal distribution is equal to the mean. The value of the parameter σ  
affects the shape of the distribution. In particular, as shown in Figure E-2, as the value of the 
standard deviation is increased from 1σ  to some value 12 σσ > , the “spread” of the distribution 
about the mean increases. Because a normal distribution depends upon the parameters, μ  and 
σ , it is often denoted by ( )σμ,N . 



EM 1110-1-4014 
31 Jan 08 

 

E-3 

 E-3.1.2.  The normal distribution is critical because measurement data (e.g., a set of con-
centration measurements) can often be modeled by it. When it is known or it can be assumed that 
a set of measurements, , follow a normal distribution, then the sample mean, nxxx ,,, 21 K x , is a 
good estimate of the population mean, μ . Also the sample standard deviation, , is a good esti-
mate for the population standard deviation, 

s
σ .  (Refer to Appendix D for the definitions of the 

sample mean and standard deviation.)   
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Figure E-2. Normal distribution. Figure E-3. Standard normal (Z)  curve. 
 
 E-3.1.3.  It can be shown, if the random variable X possesses a normal distribution, then the 
random variable 
 

 ( )
σ

μ−
=

XZ  (E-2) 

 
has a standard normal distribution, ( )1,0N . The probability density function of the standard nor-
mal distribution is illustrated in Figure E-3. Using the notation from above, we can denote the 
p100th percentile (p quantile) of Z  as Zp. The standard normal distribution is important since the 
percentiles Zp are commonly listed in statistical tables like Table B-15.  
 
 E-3.1.4.  For example, if random variable X is ( )2,3N , we can use Table B-15 to find  
as follows. Find the closest value to 0.95 in the interior of Table B-15. In this case 0.9495 and 
0.9505 are equally distant. Find  by the value to the far left of the row found in the last step 
and the top of the column. Here, it is necessary to interpolate between 1.64 and 1.65 to get 

. Figure E-4 demonstrates that 95% of the area under the standard normal density 
curve (the shaded area) lies to the left of 1.645. Returning to the stated problem, solve Equation 
E-2 for X to get: 

95.0X

95.0Z

645.195.0 =Z
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 σμ pp ZX +=  (E-3) 
 
so in this example, 
 
 . 29.6)2(645.1395.0 =+=X
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Z

Z0.95 = 1.645

 
 

Figure E-4. 95th percentile of the standard normal distribution. 
 
 E-3.1.5.  Because the standard normal distribution is symmetrical about a mean of zero, Z1–

α = –Zα. Thus, the area of the standard normal curve that falls between Z1–α and Zα is equal to 1 – 
2α (e.g., for α = 0.05, 90% of the distribution falls between Z0.05 = –1.645 to Z0.95 = 1.645). It 
follows from Equation E-1 that, in terms of the variable X, the proportion 1 – 2α (equivalently, 
100(1 – 2α)%) of the distribution falls between Xα = μ + Zα σ and X1-α = μ + Z1–α σ. Because Z1–

α = –Zα, 100(1 – 2α)% of the distribution falls within μ ± Z1–ασ. Some examples are presented 
below: 
 

• 90% of the distribution (α = 0.05) falls within the interval μ ± 1.645σ. 
 
• 95% of the distribution (α = 0.025) falls within the interval μ ± 1.960σ. 
 
• 99% of the distribution (α = 0.005) falls within the interval μ ± 2.576σ. 
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• 99.9% of the distribution (α = 0.0005) falls within the interval μ ± 3.291σ. 
 
 E-3.1.6.  Thus, approximately 95% of the distribution falls within two standard deviations 
of the mean (μ ± 2σ) and over 99% (in fact, about 99.7%) of the distribution falls within three 
standard deviations of the mean (μ ± 3σ). It can similarly be shown that about 68% of the distri-
bution falls within one standard deviation of the mean. 
 
 E-3.1.7.  Finally, a useful property of the normal distributions is that that any linear combi-
nation of normally distributed variables will also be normally distributed. In particular, let  
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where each random variable  follows the same normal distribution iX ( )σμ,N . It can be shown 
that the random variable Y is distributed as  
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This is extremely useful because the definition of Y is very similar to the definition of the sample 
mean, x , presented in Appendix G. Thus, if the variable X is normally distributed, with mean μ 
and standard deviation σ, a set of n measurements of X are taken, the sample mean x  is calcu-
lated for the set of n measurements, and this process could be repeated indefinitely. The resulting 
distribution of values of the sample mean will be normally distributed with mean and standard 
deviation: 
 
 μμ =x ,  nx /σσ =  
 
 E-3.1.8.  It also follows that 
 

 ( )
( )n
xZ
σ

μ−
=  (E-4) 

 
will follow a standard normal distribution. Although σ  is not typically known, it can be shown 
that for sufficiently large n, 
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is closely approximated by a standard normal distribution. Furthermore, if X is normally distrib-
uted and n is large, then an approximate p100% upper bound can be calculated for the population 
mean from the above equation. 
 
 )/( nsZx p+≤μ  (E-6) 
 
 E-3.1.9.  The right side of inequality is approximately the p100% upper one-sided confi-
dence limit (UCL) of the population mean. For example, if p = 0.95, then the right side of the 
inequality is the 95% UCL of the population mean. For p = 0.95, the population mean μ will be 
less than the UCL an average of 95 out of 100 times. The calculation of a 95% UCL is typically 
used in environmental risk assessments. 
 
 E-3.1.10.  Lastly, it should be noted that the UCL is useful because of the central limit 
theorem. According to the central limit theorem, Equation E-6 is approximately valid for n suffi-
ciently large regardless of whether or not the measurement variable X is normally distributed. 
The central limits theorem is discussed below. 
 
E-4.  Central Limit Theorem.  The central limit theorem states: 
 

If a variable X possesses ANY probability distribution with mean (μ) and finite standard deviation (σ), then 
the sample mean ( x ) will be approximately normally distributed with mean (μ) and standard deviation 
( )/ nσ ) if n is sufficiently large.  

 
 E-4.1.  In other words, if a set of n data points is collected and the sample mean is calcu-
lated, and this process is repeated many times and all the resulting values of sample mean are 
plotted (on a histogram), then the resulting distribution will be approximately normal if n is large 
(i.e., n > 50). As the size of the sample increases, the mean of that sample acts increasingly as if 
it came from a normal distribution regardless of the true distribution of the individual values. As 
a consequence, statistical tests that require normality may be performed using the sample mean. 
Thus, large sample sizes are desirable within the limits imposed by available resources. 
 
 E-4.2.  The central limit theorem is important for environmental applications, because the 
mean of a random sample of observations or measurements is frequently of interest (for example, 
to calculate an exposure point concentration for a risk assessment). Furthermore, no actual envi-
ronmental data set is completely normal. The assumption of normality for any data set will al-
ways be an approximation. In many cases, the normality based statistical tests are not overly 
affected by a small or even moderate deviation from normality as the tests are robust (sturdy) and 
perform tolerably well, unless gross non-normality is present. The central limit theorem ensures 
that tests become increasingly tolerant of deviations from normality as the number of individual 
samples constituting the sample mean increases.  
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E-5.  Student’s t Distribution.  The Student’s t distribution is a continuous probability distribu-
tion that is similar in shape to the standard normal distribution. Like the standard normal distri-
bution, the t distribution is a bell-shaped curve that is symmetrical about a mean of zero. 
However, the t distribution is somewhat flatter in the center and possesses fatter tails than the 
standard normal distribution. Furthermore, the shape of the t distribution is dependent upon the 
“degrees of freedom,” ν (the Greek letter nu). Each value of ν (ν = 1, 2, 3 …) gives rise to a dif-
ferent t distribution curve. The degree of “fatness” in the tails of a t distribution depends upon the 
value of ν. As ν increases, the t distribution approaches a normal distribution. These properties 
are illustrated in Figure E-5. For most practical applications, the t distribution may be approxi-
mated using a standard normal distribution when ν > 30. The mathematical function that defines 
the probability distribution is more complex than that for the normal distribution and is not pre-
sented. 
 
 E-5.1.  The standard normal curve is used when the mean (μ) and standard deviation (σ) of 
a normally distributed population of interest are known. When only an estimate of the standard 
deviation (s) is available from a sample, the t distribution applies. More precisely, if the variable 
X possesses a normal distribution, then the variable: 
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possesses a t distribution with 1−= nν  degrees of freedom. The p100% percentiles (p quantiles) 
of the t distribution are denoted as tp,ν. This value can be found using Table B-23. Find the row 
matching the degrees of freedom, ν , on the left side of the table. Find the column containing the 
value p along the top of the table. The value of tp,ν is found at the intersection of this row and col-
umn. For example, t0.95,10 = 1.812. 
 
 E-5.2.  Note that the equation that defines tp,ν provides the basis for calculating an upper 
bound for the mean (μ) when μ is unknown but the sample mean is normally distributed. It can 
be shown that 
 
 )(, n

stx p νμ +≤  (E-8) 

 
where the sample mean ( x ) and the sample standard deviation (s) are calculated for some set of 
n data points and the value tp,ν is obtained from Table B-23. Roughly speaking, the probability 
that the population mean will be less than or equal to the right side of the above inequality is 
p100%. The right side of the above inequality is referred to as the upper one-sided p100% confi-
dence limit of the population mean or simply as the 95% UCL of the population mean. 
 



EM 1110-1-4014 
31 Jan 08 
 

E-8 

-4 -2 0 2 4

ν = 1

ν = 6

Z

 
Figure E-5. Comparison of t-distribution to stan-
dard normal. 

 
E-6.  Lognormal Distribution.  It is not uncommon for environmental data to follow a log-
normal distribution. Data collected from contaminated sites often possess a skewed probability 
distribution that is easily modeled by a lognormal distribution (EPA 600/R-97/006). This occurs 
because contaminant concentrations are constrained to be non-zero values, with very high values 
near a source and declining contaminant concentrations away from source areas. 
 
 E-6.1.  The lognormal distribution is a continuous, non-symmetrical, positively skewed 
probability distribution that is bounded to the left by zero. However, like the normal distribution, 
the lognormal distribution is completely characterized by two parameters that represent the popu-
lation mean and standard deviation of the log-transformed distribution. Several lognormal distri-
butions are shown in Figure E-6. 
 
 E-6.2.  There is a simple relationship between the normal and lognormal distributions. If X 
is lognormally distributed, then Y = Ln(X) is normally distributed. Though the probability distri-
bution is a non-symmetrical, positively skewed curve (where the median of the distribution is 
less than the mean), the probability distribution for Y = Ln(X) is the symmetrical, bell-shaped 
normal curve. It is a common practice to transform data using the natural log function to achieve 
approximate normality prior to conducting statistical tests. Just as the notation N(μ, σ) was used 
to denote a normal distribution, a lognormal distribution will be denoted by Λ(μ, σ2), where μ 
and σ2, denote the population mean and variance, respectively, of the normally distributed vari-
able Y = Ln(X) (rather than the lognormally distributed variable X). For brevity, the following 
notation will be used to indicate that X possesses a log normal distribution: X ∼ Λ(μ, σ2), or, 
equivalently, Ln(X) ∼ N(μ, σ). 
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Figure E-6. Lognormal distributions. 

 
 E-6.3.  Because any linear combination of normally independent distributed variables will 
be also be normally distributed, owing to the relationship Y = Ln(X), the product a set of inde-
pendent lognormally distributed variables will also be lognormally distributed. For example, if 
X1 ∼ Λ(μ1, σ1

2), and X2 ∼ Λ(μ2, σ2
2), then  

 
 X1 X2 ∼ Λ(μ1+ μ2, σ1

2 + σ2
2)  

 
 X1/X2 ∼ Λ(μ1 – μ2, σ1

2 + σ2
2).  

 
Also, if X ∼ Λ(μ, σ 2), then  
 
 cXb ∼ Λ(aμ + b, b2σ 2) 
 
where c and b are constants, where c = exp(a) > 0 and b ≠ 0. 
 
 E-6.4.  The lognormal distribution Λ(μ, σ 2) is mathematically described by: 
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The population mean, Xμ , and standard deviation, Xσ , of the lognormally distributed variable X 
are calculated as: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
exp

2σμμ X  (E-10) 



EM 1110-1-4014 
31 Jan 08 
 

E-10 

 . (E-11) ( ) ( )[ ] ]1)[exp(1exp2exp 22222 −=−+= σμσσμσ XX

 
It follows that the (population) coefficient of variation of X is 
 

[ ] 2/12 1)exp(/ −== σσμ XXCV . 
 
The p100% population percentile (p quantile), Xp, can be found from the corresponding p100% 
percentile of the standard normal distribution, Zp, as follows: 
 

 ( )σμ pP ZX += exp . (E-12) 
 
E-7.  Binomial Distribution.  The binomial distribution is useful in describing the number of 
successful outcomes, K , from a set number of observations, . The distribution is considered 
binomial if the following conditions are satisfied (Moore, 1999): 

n

 
• The number of observations, n, is fixed. 

 
• The n observations are all independent; that is, each observation has no effect on any 

other. 
 

• Each observation falls into one of two mutually exclusive categories: Each observation is 
either a “success” or a “failure.” 

 
• The probability each observation is a “success” is p. (The probability each observation is 

a “failure” is 1– p). 
 
 E-7.1.  A common example that gives rise to a binomial distribution would be counting the 
number of heads (successes) obtained from flipping a coin a set number of times. As the number 
of successful outcomes, K , is a discrete rather than continuous random variable, then the value 
of the variable K can equal any integer value from 0 to n . The binomial probability distribution 
is described mathematically by: 
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The population mean, μ , and standard deviation, σ , are given by: 
 
 np=μ  (E-14) 
 
 ( )pnp −= 1σ  . (E-15) 
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 E-7.2.  Table B-1 gives probabilities for the binomial in terms of cumulative probability 
distribution. That is, the table reports: 
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For example, for n = 4 and p = 0.5, ( ) 6875.02 =≤KP . 
 
 E-7.3.  The binomial distribution under certain conditions can be related to the normal dis-
tribution (and the Poisson distribution, as seen in Paragraph E-8). In particular, as  becomes 
large, the binomial distribution gets close to a normal distribution with mean, , and standard 
deviation, 

n
np

( )pnp −1 . As a rule, this approximation should be used only when both np  and 
 are larger than 10 (Moore, 1999). ( pn −1 )

 
E-8.  Poisson Distribution.  The Poisson distribution is useful in describing the number of oc-
currences of an event over a fixed interval of time. A distribution is considered a Poisson distri-
bution if the following conditions are satisfied: 
 

• The event is a rare occurrence. 
 
• The occurrence of two or more events in a small interval of time is zero. 
 
• A large number of independent observations are made. 
 
• The average number of occurrences, λ, over some fixed interval of time is constant (Ma-

son et al., 1989). 
 
 E-8.1.  The Poisson distribution is typically used to describe or predict rare events. Data 
from a Poisson distribution must be independent and must be composed of only two responses, 
such as detected or not detected. Poisson distributions are common when counting the number of 
detected or not detected occurrences with environmental data that contain only a small percent-
age of detected concentrations. The probability for one of the two mutually exclusive outcomes 
must be small. Therefore, the Poisson distribution can be used for highly censored environmental 
data because the detection of an analyte in a sample would constitute a rare event. This often oc-
curs for background data when organics are being analyzed (most of the results are reported as 
not detected).  
 
 E-8.2.  The Poisson distribution can be used with background data to calculate upper limits 
for the number of detections for each organic analyte. The limits would subsequently be com-
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pared to the study area data to determine if detections for a given organic analyte are being ob-
tained more frequently for the study area than for the background area. 
 
 E-8.3.  The Poisson distribution may be used for highly censored environmental data in one 
of two ways. In the first approach, X denotes the number of times an analyte is detected. If the 
variable X follows a Poisson distribution, then the probability density function is described 
mathematically by: 
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where μ  denotes the mean of the Poisson distribution (such as the average number of times the 
analyte is detected). For example, if  analyses are performed (  background wells are analyzed 
for an analyte) and the analyte is detected k  times, then the average number of detections, 

n n
μ , is 

approximately: 
 

 .
n
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Data following a Poisson distribution have an equal mean and variance (i.e., μ = σ2).  
 
 E-8.4.  When n is large and p is small, the binomial distribution and the Poisson distribu-
tion give similar results. If follows from Equation E-14 that the probability of detecting the given 
analyte  out of  times can be calculated using the binomial distribution using the relationship: k n
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 E-8.5  For example, if and 6=k 100=n , then 
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Using the Poisson distribution, we find that the probability of one detection is  
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Using the binomial distribution, we find that the probability is: 
 

 ( ) ( ) 056539.0)0006.01()0006.0(
!1100!1

!1001 11001 =−
−

== −KP  . 

 
As previously stated, these probabilities are very similar as p is small and is large. n
 
 E-8.6.  In a second approach, X  may denote the concentration per sample rather than the 
number of detections. In this context, sometimes referred to as the “molecular approach,” sam-
ples are analyzed, the analyte is detected in the ith sample at a concentration of , and units for 
the  measurements are selected such that . For example, 

n
ix

2ppbn 1>ix 2μg / L .ix = =  In this ex-
ample, the ith sample is detected at two units or occurrences per billion units of sample examined. 
(The Poisson distribution is appropriate since the ratio of analyte to sample is small.) The mean 
concentration per sample (mean number of units per billion units of sample examined) will be: 
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Using this approach, we can readily calculate the probability that the analyte will be detected at a 
concentration X  when X is a whole number.  

 
 E-8.7.  Note the difference between the two approaches. For the first approach, the mean 
number of detections for a set of n samples is being calculated. A detection, regardless of the 
magnitude of the reported concentration greater than the detection limit, consists of a unit count 
for the calculation of the mean. In the second approach, the mean concentration or number of 
counts per sample is being calculated; thus, the magnitude of detected concentrations for an indi-
vidual sample influences the estimation of the mean. 
 
 E-8.8.  A useful property of the Poisson distribution is that, if the independent variables X1, 
X2…Xn possess Poisson distributions with means μ1, μ2…μn, respectively, then the sum of the 
variables 
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has a Poisson distribution with mean 
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Therefore, if all of the means μi = μ, it follows that μμ nY =  and ∑
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 E-8.9.  As the parameter, μ , becomes very large, the Poisson distribution can also be ap-
proximated by a normal distribution. In this case the mean and variance of the normal distribu-
tion equal to μ . 
 
E-9.  Nonparametric (Distribution Free).  Nonparametric statistical methods are used when it 
is inappropriate to assume some underlying distribution for a data set (when a data set does not 
conform to some desired theoretical probability distribution). Sometimes it is difficult to verify 
or satisfy the assumptions that are associated with parametric distributions, such as normal and 
lognormal distributions for environmental data sets. Using parametric statistical tests when the 
appropriate assumptions have not been met can result in inaccurate conclusions. In this situation, 
nonparametric (distribution free) statistical procedures would be appropriate and recommended 
(Gilbert, 1987; Hahn and Meeker, 1991). 
 
 


